Jump to content

User:Parwig/sandbox: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Parwig (talk | contribs)
No edit summary
Line 18: Line 18:
The '''Borel distribution''' is a [[discrete probability distribution]],
The '''Borel distribution''' is a [[discrete probability distribution]],
arising in contexts including [[branching processes]], [[random graphs]] and [[queueing theory]].
arising in contexts including [[branching processes]], [[random graphs]] and [[queueing theory]].





==Definition==
==Definition==
A discrete [[random variable]] ''X{{space}}'' is said to have a Borel distribution
A discrete [[random variable]] ''X{{space}}'' is said to have a Borel distribution
<ref>E. Borel. Sur l’emploi du théorème de Bernouilli pour faciliter le calcul d’une infinité de coefficients. Application au problème de l’attente à un guichet. C. R. Acad. Sci. Paris 214, 452–456 (1942)</ref><ref name="Tanner1961">
<ref>Emile Borel. Sur l’emploi du théorème de Bernouilli pour faciliter le calcul d’une infinité de coefficients. Application au problème de l’attente à un guichet. C. R. Acad. Sci. Paris 214, 452–456 (1942)
</ref><ref name="Tanner1961">
J. C. Tanner.
J. C. Tanner.
A derivation of the Borel distribution. Biometrika 48, 222-224 (1961). doi:10.1093/biomet/48.1-2.222
A derivation of the Borel distribution. Biometrika 48, 222-224 (1961).
http://biomet.oxfordjournals.org/content/48/1-2/222.citation
</ref>
</ref>
with parameter
with parameter
Line 40: Line 45:
Then a correspondence between the total size of the branching process and a hitting time for an associated random walk
Then a correspondence between the total size of the branching process and a hitting time for an associated random walk
<ref>
<ref>
The Multiplicative Process
Richard Otter
Richard Otter
The Multiplicative Process
Source: Ann. Math. Statist. Volume 20, Number 2 (1949), 206-224.
Richard Otter. The multiplicative process.
Ann. Math. Statist. 20, 206-224 (1949).
http://projecteuclid.org/euclid.aoms/1177730031
</ref><ref name=Dwass>
</ref><ref name=Dwass>
The Total Progeny in a Branching Process and a Related Random Walk
Meyer Dwass. The Total Progeny in a Branching Process and a Related Random Walk.
J. Appl. Probab. 6, 682-686 (1969).
Meyer Dwass
http://www.jstor.org/stable/3212112
Journal of Applied Probability , Vol. 6, No. 3 (Dec., 1969), pp. 682-686
Published by: Applied Probability Trust
Article Stable URL: http://www.jstor.org/stable/3212112
</ref><ref name=Pitman>
</ref><ref name=Pitman>
Jim Pitman.
Enumerations Of Trees And Forests Related To Branching Processes And Random Walks (1997)
Enumerations Of Trees And Forests Related To Branching Processes And Random Walks (1997).
by Jim Pitman. Microsurveys in Discrete Probability, number 41 in DIMACS Ser. Discrete Math. Theoret. Comp. Sci
Microsurveys in Discrete Probability, no. 41 in DIMACS Ser. Discrete Math. Theoret. Comp. Sci (1997).
http://statistics.berkeley.edu/sites/default/files/tech-reports/482.pdf
</ref> gives
</ref> gives
:<math>\Pr(X=n)=\frac{1}{n}\Pr(S_n=n-1)</math>
:<math>\Pr(X=n)=\frac{1}{n}\Pr(S_n=n-1)</math>
Line 68: Line 75:
In an [[M/D/1 queue]] with arrival rate ''μ'' and common service time 1,
In an [[M/D/1 queue]] with arrival rate ''μ'' and common service time 1,
the distribution of a typical busy period of the queue is Borel with parameter ''μ''.
the distribution of a typical busy period of the queue is Borel with parameter ''μ''.
<ref name=HaightBreuer>Frank A. Haight and Melvin Allen Breuer. The Borel-Tanner distribution. Biometrika 47, 143-150 (1960)</ref>
<ref name=HaightBreuer>Frank A. Haight and Melvin Allen Breuer. The Borel-Tanner distribution. Biometrika 47, 143-150 (1960).
http://biomet.oxfordjournals.org/content/47/1-2/143.citation</ref>


==Properties==
==Properties==
Line 77: Line 85:
:<math>P_\mu^*(n)=(1-\mu)\frac{e^{-\mu n}(\mu n)^{n-1}}{(n-1)!}.</math>
:<math>P_\mu^*(n)=(1-\mu)\frac{e^{-\mu n}(\mu n)^{n-1}}{(n-1)!}.</math>
Aldous and Pitman
Aldous and Pitman
<ref> D. Aldous and J. Pitman. Tree-valued Markov chains derived from Galton-Watson processes.
<ref> David Aldous and Jim Pitman. Tree-valued Markov chains derived from Galton-Watson processes.
Ann. Inst. Henri Poincaré 34, 637-686 (1998). doi: 10.1016/S0246-0203(98)80003-4.
Ann. Inst. Henri Poincaré 34, 637-686 (1998). http://dx.doi.org/10.1016/S0246-0203(98)80003-4
</ref>
</ref>
show that
show that
Line 89: Line 97:


==Borel-Tanner distribution==
==Borel-Tanner distribution==
The '''Borel-Tanner distribution''' generalizes the Borel distribution.
Let <math>k\in\{1,2,3,...\}</math>.
Let <math>k\in\{1,2,3,...\}</math>.
If <math>X_1, X_2,..., X_k</math> are independent and each have
If <math>X_1, X_2,..., X_k</math> are independent and each have
Line 94: Line 103:
<math>W=X_1+X_2+...+X_k</math> is said to have
<math>W=X_1+X_2+...+X_k</math> is said to have
Borel-Tanner distribution with parameters ''μ'' and ''k''.
Borel-Tanner distribution with parameters ''μ'' and ''k''.
<ref>J. C. Tanner. A problem of interference between two queues. Biometrika 40, 58-69 (1953)</ref>
<ref>J. C. Tanner. A problem of interference between two queues. Biometrika 40, 58-69 (1953).
http://www.jstor.org/stable/2333097
<ref name="Tanner1961" />
<ref name=HaightBreuer />
</ref><ref name="Tanner1961" /><ref name=HaightBreuer />
This gives the distribution of the total number of individuals
This gives the distribution of the total number of individuals
in a Poisson-Galton-Watson process starting with ''k'' individuals in the first generation,
in a Poisson-Galton-Watson process starting with ''k'' individuals in the first generation,
Line 102: Line 111:
The case ''k''=1 is simply the Borel distribution above.
The case ''k''=1 is simply the Borel distribution above.


Generalizing the random walk representation given above for ''k''=1, <ref name=Dwass /><ref name=Pitman />
Generalizing the random walk correspondence given above for ''k''=1, <ref name=Dwass /><ref name=Pitman />
:<math>\Pr(W=n)=\frac{k}{n}\Pr(S_n=n-k)</math>
:<math>\Pr(W=n)=\frac{k}{n}\Pr(S_n=n-k)</math>
where <math>S_n</math> has Poisson distribution with mean ''nμ''. As a result the probability mass function
where <math>S_n</math> has Poisson distribution with mean ''nμ''. As a result the probability mass function
is given by
is given by
:<math>\Pr(W=n)=\frac{k}{n}\frac{e^{-\mu n}(\mu n)^{n-k}}{(n-k)!}</math>
:<math>\Pr(W=n)=\frac{k}{n}\frac{e^{-\mu n}(\mu n)^{n-k}}{(n-k)!}</math>
for ''n''=''k'', ''k''+1, ....
for ''n''=''k'', ''k''+1, ... .


==References==
==References==

Revision as of 15:41, 22 August 2013

Borel distribution
Parameters
Support
PMF
Mean
Variance

The Borel distribution is a discrete probability distribution, arising in contexts including branching processes, random graphs and queueing theory.



Definition

A discrete random variable X  is said to have a Borel distribution [1][2] with parameter if the probability mass function of X  is given by

for n = 1, 2, 3 ....

Derivation and branching process interpretation

If G is a Galton-Watson branching process whose common offspring distribution is Poisson with mean μ, then the total number of individuals in the branching process has Borel distribution with parameter μ.

Let X  be the total number of individuals in a Galton-Watson branching process. Then a correspondence between the total size of the branching process and a hitting time for an associated random walk [3][4][5] gives

where , and are independent identically distributed random variables whose common distribution is the offspring distribution of the branching process. In the case where this common distribution is Poisson with mean μ, the random variable has Poisson distribution with mean μn, leading to the mass function of the Borel distribution given above.

Since the mth generation of the branching process has mean size , the mean of X  is .

Queueing theory interpretation

In an M/D/1 queue with arrival rate μ and common service time 1, the distribution of a typical busy period of the queue is Borel with parameter μ. [6]

Properties

If is the probability mass function of a Borel(μ) random variable, then the mass function of a sized-biased sample from the distribution (i.e. the mass function proportional to ) is given by

Aldous and Pitman [7] show that

.

In words, this says that a Borel(μ) random variable has the same distribution as a size-biased Borel(μU) random variable, where U has the uniform distribution on [0,1].

This relation leads to various useful formulas, including

Borel-Tanner distribution

The Borel-Tanner distribution generalizes the Borel distribution. Let . If are independent and each have Borel distribution with parameter μ, then their sum is said to have Borel-Tanner distribution with parameters μ and k. [8][2][6] This gives the distribution of the total number of individuals in a Poisson-Galton-Watson process starting with k individuals in the first generation, or of the time taken for an M/D/1 queue to empty starting with k jobs in the queue. The case k=1 is simply the Borel distribution above.

Generalizing the random walk correspondence given above for k=1, [4][5]

where has Poisson distribution with mean . As a result the probability mass function is given by

for n=k, k+1, ... .

References

  1. ^ Emile Borel. Sur l’emploi du théorème de Bernouilli pour faciliter le calcul d’une infinité de coefficients. Application au problème de l’attente à un guichet. C. R. Acad. Sci. Paris 214, 452–456 (1942)
  2. ^ a b J. C. Tanner. A derivation of the Borel distribution. Biometrika 48, 222-224 (1961). http://biomet.oxfordjournals.org/content/48/1-2/222.citation
  3. ^ Richard Otter The Multiplicative Process Richard Otter. The multiplicative process. Ann. Math. Statist. 20, 206-224 (1949). http://projecteuclid.org/euclid.aoms/1177730031
  4. ^ a b Meyer Dwass. The Total Progeny in a Branching Process and a Related Random Walk. J. Appl. Probab. 6, 682-686 (1969). http://www.jstor.org/stable/3212112
  5. ^ a b Jim Pitman. Enumerations Of Trees And Forests Related To Branching Processes And Random Walks (1997). Microsurveys in Discrete Probability, no. 41 in DIMACS Ser. Discrete Math. Theoret. Comp. Sci (1997). http://statistics.berkeley.edu/sites/default/files/tech-reports/482.pdf
  6. ^ a b Frank A. Haight and Melvin Allen Breuer. The Borel-Tanner distribution. Biometrika 47, 143-150 (1960). http://biomet.oxfordjournals.org/content/47/1-2/143.citation
  7. ^ David Aldous and Jim Pitman. Tree-valued Markov chains derived from Galton-Watson processes. Ann. Inst. Henri Poincaré 34, 637-686 (1998). http://dx.doi.org/10.1016/S0246-0203(98)80003-4
  8. ^ J. C. Tanner. A problem of interference between two queues. Biometrika 40, 58-69 (1953). http://www.jstor.org/stable/2333097

Borel-Tanner distribution in Mathematica.