Jump to content

Induction coil: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Anrnusna (talk | contribs)
No edit summary
m fixing page range dashes using AWB (9488)
Line 89: Line 89:
| volume = 9
| volume = 9
| issue = 3
| issue = 3
| pages = 472-478
| pages = 472–478
| publisher =
| publisher =
| location =
| location =
Line 102: Line 102:
| title = The Annals of Electricity, Magnetism, and Chemistry, Vol. 1
| title = The Annals of Electricity, Magnetism, and Chemistry, Vol. 1
| publisher = Sherwood, Gilbert, and Piper
| publisher = Sherwood, Gilbert, and Piper
| date = 1837
| year = 1837
| location = London
| location = London
| pages = 229-230
| pages = 229–230
| url = http://books.google.com/books?id=SXgMAAAAYAAJ&pg=PA229&lpg=PA229
| url = http://books.google.com/books?id=SXgMAAAAYAAJ&pg=PA229&lpg=PA229
| doi =
| doi =
Line 113: Line 113:
| title = The Alternate Current Transformer in Theory and Practice, Vol. 2
| title = The Alternate Current Transformer in Theory and Practice, Vol. 2
| publisher = The Electrician Publishing Co.
| publisher = The Electrician Publishing Co.
| date = 1896
| year = 1896
| location = London
| location = London
| pages = 16-18
| pages = 16–18
| url = http://books.google.com/?id=17sKAAAAIAAJ&pg=PA16
| url = http://books.google.com/?id=17sKAAAAIAAJ&pg=PA16
| doi =
| doi =
Line 127: Line 127:
| date =
| date =
| url = http://www.nuim.ie/museum/ncallan.html
| url = http://www.nuim.ie/museum/ncallan.html
| format =
| doi =
| doi =
| accessdate = February 14, 2013}}</ref> and improved by [[William Sturgeon]] and [[Charles Grafton Page]]. [[George Henry Bachhoffner]] and Sturgeon (1837) independently discovered that a "divided" iron core of iron wires reduced power losses.<ref name="Fleming2">[http://books.google.com/?id=17sKAAAAIAAJ&pg=PA10 Fleming (1896) ''The Alternate Current Transformer in Theory and Practice, Vol. 2'', p. 10-11]</ref> The early coils had hand cranked interrupters, invented by Callan and Antoine Philibert Masson (1837).<ref name="Masson1">{{cite journal
| accessdate = February 14, 2013}}</ref> and improved by [[William Sturgeon]] and [[Charles Grafton Page]]. [[George Henry Bachhoffner]] and Sturgeon (1837) independently discovered that a "divided" iron core of iron wires reduced power losses.<ref name="Fleming2">[http://books.google.com/?id=17sKAAAAIAAJ&pg=PA10 Fleming (1896) ''The Alternate Current Transformer in Theory and Practice, Vol. 2'', p. 10-11]</ref> The early coils had hand cranked interrupters, invented by Callan and Antoine Philibert Masson (1837).<ref name="Masson1">{{cite journal
Line 138: Line 137:
| volume = 4
| volume = 4
| issue =
| issue =
| pages = 456-460
| pages = 456–460
| publisher = Elsevier
| publisher = Elsevier
| location = Paris
| location = Paris
| date = 1837
| year = 1837
| url = http://gallica.bnf.fr/ark:/12148/bpt6k29634/f460.image
| url = http://gallica.bnf.fr/ark:/12148/bpt6k29634/f460.image
| issn =
| issn =
Line 153: Line 152:
| volume = 66
| volume = 66
| issue =
| issue =
| pages = 5-36
| pages = 5–36
| publisher = Elsevier
| publisher = Elsevier
| location = Paris
| location = Paris
| date = 1837
| year = 1837
| url = http://books.google.com/books?id=GsxGpge1LEoC&pg=PA11#v=onepage&q&f=false
| url = http://books.google.com/books?id=GsxGpge1LEoC&pg=PA11#v=onepage&q&f=false
| issn =
| issn =
Line 169: Line 168:
| volume = 4
| volume = 4
| issue = 3
| issue = 3
| pages = 129-152
| pages = 129–152
| publisher = Elsevier
| publisher = Elsevier
| location = Paris
| location = Paris
| date = 1841
| year = 1841
| url = http://books.google.com/books?id=UBwzAQAAMAAJ&pg=RA1-PA129#v=onepage&q&f=false
| url = http://books.google.com/books?id=UBwzAQAAMAAJ&pg=RA1-PA129#v=onepage&q&f=false
| issn =
| issn =
Line 187: Line 186:
| publisher = BAAS
| publisher = BAAS
| location =
| location =
| date = 1838
| year = 1838
| url =
| url =
| accessdate = }} presented at meeting of September 1837 in Liverpool, England</ref><ref name="Page">{{cite book
| accessdate = }} presented at meeting of September 1837 in Liverpool, England</ref><ref name="Page">{{cite book
Line 194: Line 193:
| title = History of Induction: The American Claim to the Induction Coil and Its Electrostatic Developments
| title = History of Induction: The American Claim to the Induction Coil and Its Electrostatic Developments
| publisher = Intelligencer Printing House
| publisher = Intelligencer Printing House
| date = 1867
| year = 1867
| location = Washington, D.C.
| location = Washington, D.C.
| pages = 26-27, 57
| pages = 26–27, 57
| url = http://books.google.com/books?id=lrzn9ZX79jAC&pg=PA26#v=onepage&q&f=false
| url = http://books.google.com/books?id=lrzn9ZX79jAC&pg=PA26#v=onepage&q&f=false
| doi =
| doi =
Line 207: Line 206:
| volume = 46
| volume = 46
| issue =
| issue =
| pages = 104-127
| pages = 104–127
| publisher =
| publisher =
| location = Berlin
| location = Berlin
| date = 1839
| year = 1839
| url = http://books.google.com/books?id=iBcAAAAAMAAJ&pg=PA104#v=onepage&q&f=false
| url = http://books.google.com/books?id=iBcAAAAAMAAJ&pg=PA104#v=onepage&q&f=false
| issn =
| issn =
Line 222: Line 221:
| volume = 36
| volume = 36
| issue =
| issue =
| pages = 352-366
| pages = 352–366
| publisher =
| publisher =
| location =
| location =
| date = 1835
| year = 1835
| url = http://gallica.bnf.fr/ark:/12148/bpt6k15121m/f368.image
| url = http://gallica.bnf.fr/ark:/12148/bpt6k15121m/f368.image
| accessdate = February 14, 2013}} Description of Neeff and Wagner's earlier toothed wheel interrupter</ref> [[Hippolyte Fizeau]] (1853) introduced the use of the quenching capacitor.<ref name="Fizeau">{{cite journal
| accessdate = February 14, 2013}} Description of Neeff and Wagner's earlier toothed wheel interrupter</ref> [[Hippolyte Fizeau]] (1853) introduced the use of the quenching capacitor.<ref name="Fizeau">{{cite journal
Line 234: Line 233:
| volume = 36
| volume = 36
| issue =
| issue =
| pages = 418-421
| pages = 418–421
| publisher = Elsevier
| publisher = Elsevier
| location =
| location =
| date = 1853
| year = 1853
| url = http://gallica.bnf.fr/ark:/12148/bpt6k2993z/f422.image
| url = http://gallica.bnf.fr/ark:/12148/bpt6k2993z/f422.image
| accessdate = February 14, 2013}}</ref><ref>{{cite web|last=Severns|first=Rudy|title=History of soft switching, Part 2|work=Design Resource Center|publisher=Switching Power Magazine|url=http://www.switchingpowermagazine.com/downloads/Oct%2001%20soft.pdf|accessdate=2008-05-16}}</ref> [[Heinrich Ruhmkorff]] generated higher voltages by greatly increasing the length of the secondary, in some coils using 5 or 6 miles (10&nbsp;km) of wire, and produced sparks up to 16 inches. In the early 1850s, American inventor [[Edward Samuel Ritchie]] introduced the divided secondary construction to improve insulation.<ref>American Academy of Arts and Sciences, ''Proceedings of the American Academy of Arts and Sciences'', Vol. XXIII, May 1895 - May 1896, Boston: University Press, John Wilson and Son (1896), pp. 359-360</ref><ref>Page, Charles G., ''History of Induction: The American Claim to the Induction Coil and Its Electrostatic Developments'', Washington, D.C.: Intelligencer Printing House (1867), [http://books.google.com/books?id=lrzn9ZX79jAC&pg=PA104#v=onepage&q&f=false pp. 104-106]</ref> Callan's induction coil was named an [[List of IEEE milestones|IEEE Milestone]] in 2006.<ref>{{cite web |url=http://www.ieeeghn.org/wiki/index.php/Milestones:Callan%27s_Pioneering_Contributions_to_Electrical_Science_and_Technology,_1836 |title=Milestones:Callan's Pioneering Contributions to Electrical Science and Technology, 1836 |author= |date= |work=IEEE Global History Network |publisher=IEEE |accessdate=26 July 2011}}</ref>
| accessdate = February 14, 2013}}</ref><ref>{{cite web|last=Severns|first=Rudy|title=History of soft switching, Part 2|work=Design Resource Center|publisher=Switching Power Magazine|url=http://www.switchingpowermagazine.com/downloads/Oct%2001%20soft.pdf|accessdate=2008-05-16}}</ref> [[Heinrich Ruhmkorff]] generated higher voltages by greatly increasing the length of the secondary, in some coils using 5 or 6 miles (10&nbsp;km) of wire, and produced sparks up to 16 inches. In the early 1850s, American inventor [[Edward Samuel Ritchie]] introduced the divided secondary construction to improve insulation.<ref>American Academy of Arts and Sciences, ''Proceedings of the American Academy of Arts and Sciences'', Vol. XXIII, May 1895 - May 1896, Boston: University Press, John Wilson and Son (1896), pp. 359-360</ref><ref>Page, Charles G., ''History of Induction: The American Claim to the Induction Coil and Its Electrostatic Developments'', Washington, D.C.: Intelligencer Printing House (1867), [http://books.google.com/books?id=lrzn9ZX79jAC&pg=PA104#v=onepage&q&f=false pp. 104-106]</ref> Callan's induction coil was named an [[List of IEEE milestones|IEEE Milestone]] in 2006.<ref>{{cite web |url=http://www.ieeeghn.org/wiki/index.php/Milestones:Callan%27s_Pioneering_Contributions_to_Electrical_Science_and_Technology,_1836 |title=Milestones:Callan's Pioneering Contributions to Electrical Science and Technology, 1836 |author= |date= |work=IEEE Global History Network |publisher=IEEE |accessdate=26 July 2011}}</ref>
Line 267: Line 266:
* [http://www.rmcybernetics.com/projects/DIY_Devices/homemade_ignition_coil_driver.htm Battery powered Driver circuit for Induction Coils]
* [http://www.rmcybernetics.com/projects/DIY_Devices/homemade_ignition_coil_driver.htm Battery powered Driver circuit for Induction Coils]
* [http://www.crtsite.com/page8.html The Cathode Ray Tube site]
* [http://www.crtsite.com/page8.html The Cathode Ray Tube site]
* {{Citation |first=F. H. |last=Newman |title=A New Form of Wehnelt Interrupter |journal=[[Proceedings of the Royal Society A]] |volume=99 |issue=699 |date=1 July 1921 |pages=324-330, plates 3 and 4 |url=http://ia600501.us.archive.org/25/items/philtrans03262334/03262334.pdf |publisher=Royal Society of London |doi=10.1098/rspa.1921.0045 }}
* {{Citation |first=F. H. |last=Newman |title=A New Form of Wehnelt Interrupter |journal=[[Proceedings of the Royal Society A]] |volume=99 |issue=699 |date=1 July 1921 |pages=324–330, plates 3 and 4 |url=http://ia600501.us.archive.org/25/items/philtrans03262334/03262334.pdf |publisher=Royal Society of London |doi=10.1098/rspa.1921.0045 }}


{{DEFAULTSORT:Induction Coil}}
{{DEFAULTSORT:Induction Coil}}

Revision as of 21:40, 18 September 2013

An induction coil or "spark coil" (archaically known as an inductorium or Ruhmkorff coil after Heinrich Ruhmkorff) is a type of electrical transformer used to produce high-voltage pulses from a low-voltage direct current (DC) supply. To create the flux changes necessary to induce voltage in the secondary, the direct current in the primary is repeatedly interrupted by a vibrating mechanical contact called an interrupter. Developed beginning in 1836 by Nicholas Callan and others, the induction coil was the first type of transformer. They were widely used in x-ray machines, spark-gap radio transmitters, arc lighting and quack medical electrotherapy devices from the 1880s to the 1920s. Today their only use is as the ignition coils in internal combustion engines, and in physics education to demonstrate induction.

The term 'induction coil' is also used for a coil carrying high-frequency alternating current (AC), producing eddy currents to heat objects placed in the interior of the coil, in induction heating or zone melting equipment.

Antique induction coil used in schools, from around 1900, Bremerhaven, Germany

How it works

Induction coil showing construction, from 1920.

An induction coil consists of two coils of insulated copper wire wound around a common iron core. One coil, called the primary winding, is made from relatively few (tens or hundreds) turns of coarse wire. The other coil, the secondary winding, typically consists of many (thousands) turns of fine wire.

An electric current is passed through the primary, creating a magnetic field. Because of the common core, most of the primary's magnetic field couples with the secondary winding. The primary behaves as an inductor, storing energy in the associated magnetic field. When the primary current is suddenly interrupted, the magnetic field rapidly collapses. This causes a high voltage pulse to be developed across the secondary terminals through electromagnetic induction. Because of the large number of turns in the secondary coil, the secondary voltage pulse is typically many thousands of volts. This voltage is often sufficient to cause an electric spark, to jump across an air gap separating the secondary's output terminals. For this reason, induction coils were called spark coils.

The size of induction coils was usually specified by the length of spark it could produce; a '4 inch' (10 cm) induction coil was one that could produce a 4 inch arc.

The interrupter

Waveforms in the induction coil, demonstrating how the interrupter works. The blue trace, i1 is the current in the coil's primary winding. It is broken periodically by the vibrating contact of the interrupter. The voltage induced in the secondary, v2 shown in red, is proportional to the rate of change (slope) of the primary current. Both the "make" and "break" of the current induce pulses of voltage in the secondary, but the current change is much more abrupt on "break", and this generates the high voltage pulses produced by the coil.

To operate the coil continuously, the DC supply current must be broken repeatedly to create the magnetic field changes needed for induction. Induction coils use a magnetically activated vibrating arm called an interrupter or break to rapidly connect and break the current flowing into the primary coil. The interrupter is mounted on the end of the coil next to the iron core. When the power is turned on, the magnetic field of the core created by the current flowing in the primary attracts the interrupter's iron armature attached to the springy arm, opening a pair of contacts in the primary circuit. When the magnetic field then collapses, the arm springs away, closing the contacts again and turning on the current again. This cycle is repeated many times per second.

Opposite potentials are induced in the secondary when the interrupter 'breaks' the circuit and 'closes' the circuit. However, the current change in the primary is much more abrupt when the interrupter 'breaks'. When the contacts close, the current builds up slowly in the primary because the supply voltage has a limited ability to force current through the coil's inductance. In contrast, when the interrupter contacts open, the current falls to zero suddenly. So the pulse of voltage induced in the secondary at 'break' is much larger than the pulse induced at 'close', it is the 'break' that generates the coil's high voltage output. A "snubber" capacitor of 0.5 to 15 μF is used across the contacts to quench the arc on the 'break', which causes much faster switching and higher voltages. So the open circuit output waveform of an induction coil is a series of alternating positive and negative pulses, but with one polarity much larger than the other.

Construction details

To prevent the high voltages generated in the coil from breaking down the thin insulation and arcing between the secondary wires, the secondary coil uses special construction so as to avoid having wires carrying large voltage differences lying next to each other. In one widely-used technique, the secondary coil is wound in many thin flat pancake-shaped sections (called "pies"), connected in series. The primary coil is first wound on the iron core, and insulated from the secondary with a thick paper or rubber coating. Then each secondary subcoil is connected to the coil next to it, and slid onto the iron core, insulated from adjoining coils with waxed cardboard disks. The voltage developed in each subcoil isn't large enough to jump between the wires in the subcoil. Large voltages are only developed across many subcoils in series, which are too widely separated to arc over. To give the entire coil a final insulating coating, it is immersed in melted paraffin wax or rosin, and the air evacuated to ensure there are no air bubbles left inside, and the paraffin allowed to solidify, so the entire coil is encased in wax.

To prevent eddy currents, which cause energy losses, the iron core is made of a bundle of parallel iron wires, individually coated with shellac to insulate them electrically. The eddy currents, which flow in loops in the core perpendicular to the magnetic axis, are blocked by the layers of insulation. The ends of the insulated primary coil often protruded several inches from either end of the secondary coil, to prevent arcs from the secondary to the primary or the core.

Mercury and electrolytic interrupters

Three-electrode Wehnelt interrupter used in high power coils

Although modern induction coils used for educational purposes all use the vibrating arm 'hammer' type interrupter described above, these were inadequate for powering the large induction coils used in spark-gap radio transmitters and x-ray machines around the turn of the 20th century. In powerful coils the high primary current created arcs at the interrupter contacts which quickly destroyed the contacts. Also, since each "break" produces a pulse of voltage from the coil, the more breaks per second the greater the power output. Hammer interrupters were not capable of interruption rates over 200 breaks per second, and the ones used on powerful coils were limited to 20 – 40 breaks per second.

Therefore much research went into improving interrupters, and improved designs were used in high power coils, with the hammer interrupters only used on small coils under 8" sparks.[1] Léon Foucault and others developed interrupters consisting of an oscillating needle dipping into and out of a container of mercury. The mercury was covered with a layer of spirits which extinguished the arc quickly, causing faster switching. These were often driven by a separate electromagnet or motor, which allowed the interruption rate and "dwell" time to be adjusted separately of the primary current.

The largest coils used either electrolytic or mercury turbine interrupters. The electrolytic or Wehnelt interrupter, invented by Arthur Wehnelt in 1899, consisted of a short platinum needle anode immersed in an electrolyte of dilute sulfuric acid, with the other side of the circuit connected to a lead plate cathode.[2] When the primary current passed through it, gas bubbles formed on the needle which repeatedly broke the circuit. This resulted in a primary current broken randomly at rates up to 2000 breaks per second. Mercury turbine interrupters had a centrifugal pump which sprayed a stream of liquid mercury on rotating metal contacts. They could achieve interruption rates up to 10,000 breaks per second, and were the most widely used type of interrupter in commercial wireless stations.[2]

Early coil by William Sturgeon, 1837. The sawtooth zinc interrupter wheel (D) was turned by hand. The first coil to use a divided core of iron wires (F) to prevent eddy currents.
Early coil by Charles G. Page, 1838, had one of the first automatic interrupters. The cup was filled with mercury. The magnetic field attracted the iron piece on the arm (left), lifting the wire out of the cup, breaking the primary circuit.
Induction coil by Heinrich Ruhmkorff, 1850s. In addition to the hammer interrupter (right), it had a mercury interrupter by Fizeau (left) that could be adjusted to change the dwell time.
One of the largest coils ever constructed, built in 1877 by Alfred Apps for William Spottiswoode. Wound with 280 miles of wire, could produce a 42 in. (106 cm) spark, corresponding to roughly one million volts. Powered by 30 quart size liquid batteries and a separate interrupter (not shown).
Vibrator ignition coil used in early automobiles such as the Ford Model T around 1910
Modern automobile ignition coil, the largest remaining use for induction coils

History

The first induction coil, built by Nicholas Callan, 1836.

The induction coil was the first type of electrical transformer. During its development between 1836 and the 1860s, mostly by trial and error, researchers discovered many of the principles that governed all transformers, such as the proportionality between turns and output voltage, and the use of a "divided" iron core to reduce eddy current losses.

Michael Faraday discovered the principle of induction, Faraday's induction law, in 1831 and did the first experiments with induction between coils of wire.[3] The induction coil was invented by the Irish scientist and Catholic priest Nicholas Callan in 1836 at the St. Patrick's College, Maynooth[4][5][6][7] and improved by William Sturgeon and Charles Grafton Page. George Henry Bachhoffner and Sturgeon (1837) independently discovered that a "divided" iron core of iron wires reduced power losses.[8] The early coils had hand cranked interrupters, invented by Callan and Antoine Philibert Masson (1837).[9][10][11] The automatic 'hammer' interrupter was invented by Rev. Prof. James William MacGauley (1838) of Dublin, Ireland,[12][13] Johann Philipp Wagner (1839), and Christian Ernst Neeff (1847).[14][15] Hippolyte Fizeau (1853) introduced the use of the quenching capacitor.[16][17] Heinrich Ruhmkorff generated higher voltages by greatly increasing the length of the secondary, in some coils using 5 or 6 miles (10 km) of wire, and produced sparks up to 16 inches. In the early 1850s, American inventor Edward Samuel Ritchie introduced the divided secondary construction to improve insulation.[18][19] Callan's induction coil was named an IEEE Milestone in 2006.[20]

Induction coils were used to provide high voltage for early gas discharge and Crookes tubes and other high voltage research. They were also used to provide entertainment (lighting Geissler tubes, for example) and to drive small "shocking coils", Tesla coils and violet ray devices used in quack medicine. They were used by Hertz to demonstrate the existence of electromagnetic waves, as predicted by James Maxwell and by Lodge and Marconi in the first research into radio waves. Their largest industrial use was probably in early wireless telegraphy spark-gap radio transmitters and to power early cold cathode x-ray tubes from the 1890s to the 1920s, after which they were supplanted in both these applications by AC transformers and vacuum tubes. However their largest use was as the ignition coil or spark coil in the ignition system of internal combustion engines, where they are still used, although the interrupter contacts are now replaced by solid state switches. A smaller version is used to trigger the flash tubes used in cameras and strobe lights.

See also

Footnotes

  1. ^ Collins, Archie F. (1908). The Design and Construction of Induction Coils. New York: Munn & Co. p.98
  2. ^ a b Moore, Arthur (1911). How to make a wireless set. Chicago: The Popular Mechanics Co. ISBN 1440048746. The electrolytic interrupter consists of a vessel containing a solution of dilute sulphuric acid with two terminals immersed in this solution. The positive terminal or anode is made of platinum and should have a surface of about 3/16 in.[sic] The negative terminal or cathode is made of lead and should have an area of something like 1 sq. ft. When this interrupter is connected in series with the primary of an induction coil and a source of electromotive force of about 40 volts, the circuit will be interrupted, due to the formation and collapse of bubbles on the platinum electrode. {{cite book}}: Cite has empty unknown parameter: |coauthors= (help) Page 31 describes electrolytic interrupter, but does not identify as Wehnelt interrupter.
  3. ^ Faraday, Michael (1834). "Experimental researches on electricity, 7th series". Phil. Trans. R. Soc. (London). 124: 77–122. doi:10.1098/rstl.1834.0008.
  4. ^ Callan, N. J. (December 1836). "On a new galvanic battery". Philosophical Magazine. 9 (3): 472–478. Retrieved February 14, 2013. {{cite journal}}: Cite has empty unknown parameter: |coauthors= (help)
  5. ^ Callan, N. J. A Description of an Electromagnetic Repeater in Sturgeon, Ed., William (1837). The Annals of Electricity, Magnetism, and Chemistry, Vol. 1. London: Sherwood, Gilbert, and Piper. pp. 229–230. and p.522 fig. 52
  6. ^ Fleming, John Ambrose (1896). The Alternate Current Transformer in Theory and Practice, Vol. 2. London: The Electrician Publishing Co. pp. 16–18.
  7. ^ McKeith, Niall. "Reverend Professor Nicholas Callan". National Science Museum. St. Patrick's College, Maynooth. Retrieved February 14, 2013.
  8. ^ Fleming (1896) The Alternate Current Transformer in Theory and Practice, Vol. 2, p. 10-11
  9. ^ Masson, Antoine Philibert (1837). "Rapport sur plusieurs mémoires, relatifs à un mode particulier d'action des courants électriques (Report on several memoirs regarding a particular mode of action of electric currents)". Comptes rendus. 4. Paris: Elsevier: 456–460. Retrieved February 14, 2013. {{cite journal}}: Cite has empty unknown parameter: |coauthors= (help) On page 458, an interrupter consisting of a toothed wheel is described.
  10. ^ Masson, A. (1837). "De l'induction d'un courant sur lui-même (On the induction of a current in itself)". Annales de Chimie et de Physique. 66. Paris: Elsevier: 5–36. Retrieved February 14, 2013.
  11. ^ Masson, Antoine Philibert (1841). "Mémoire sur l'induction". Annales de chimie et de physique. 4 (3). Paris: Elsevier: 129–152. Retrieved February 14, 2013. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help) On page 134, Masson describes the toothed wheels that functioned as an interrupter.
  12. ^ McGauley, J. W. (1838). "Electro-magnetic apparatus for the production of electricity of high intensity". Proceedings of the British Association for the Advancement of Science. 7. BAAS: 25. presented at meeting of September 1837 in Liverpool, England
  13. ^ Page, Charles Grafton (1867). History of Induction: The American Claim to the Induction Coil and Its Electrostatic Developments. Washington, D.C.: Intelligencer Printing House. pp. 26–27, 57.
  14. ^ Neeff, Christian Ernst (1839). "Ueber einen neuen Magnetelektromotor (On a new electromagnetic motor)". Annalen der Physik und Chemie. 46. Berlin: 104–127. Retrieved February 14, 2013.
  15. ^ Neeff, C. (1835). "Das Blitzrad, ein Apparat zu rasch abwechselnden galvanischen Schliessungen und Trennungen (The spark wheel, an apparatus for rapidly alternating closings and openings of galvanic circuits)". Annalen der Physik und Chemie. 36: 352–366. Retrieved February 14, 2013. Description of Neeff and Wagner's earlier toothed wheel interrupter
  16. ^ Fizeau, H. (1853). "Note sur les machines électriques inductives et sur un moyen facile d'accroître leurs effets (Note on electric induction machines and on an easy way to increase their effects)". Comptes rendus. 36. Elsevier: 418–421. Retrieved February 14, 2013.
  17. ^ Severns, Rudy. "History of soft switching, Part 2" (PDF). Design Resource Center. Switching Power Magazine. Retrieved 2008-05-16.
  18. ^ American Academy of Arts and Sciences, Proceedings of the American Academy of Arts and Sciences, Vol. XXIII, May 1895 - May 1896, Boston: University Press, John Wilson and Son (1896), pp. 359-360
  19. ^ Page, Charles G., History of Induction: The American Claim to the Induction Coil and Its Electrostatic Developments, Washington, D.C.: Intelligencer Printing House (1867), pp. 104-106
  20. ^ "Milestones:Callan's Pioneering Contributions to Electrical Science and Technology, 1836". IEEE Global History Network. IEEE. Retrieved 26 July 2011.

Further reading