Frobenius covariant: Difference between revisions
m →References: clean up /fixed checkwiki error 18 using AWB (8717) |
Cuzkatzimhut (talk | contribs) →Example: projections |
||
Line 21: | Line 21: | ||
This matrix has two eigenvalues, 5 and −2. The corresponding eigen decomposition is |
This matrix has two eigenvalues, 5 and −2. The corresponding eigen decomposition is |
||
:<math> A = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \\ 4 & -3 \end{bmatrix}. </math> |
:<math> A = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1/7 \\ 4 & -1/7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \\ 4 & -3 \end{bmatrix}. </math> |
||
Hence the Frobenius covariants are |
Hence the Frobenius covariants, manifestly projections, are |
||
:<math> \begin{align} |
:<math> \begin{align} |
||
A_1 &= c_1 r_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \end{bmatrix} = \begin{bmatrix} 3/7 & 3/7 \\ 4/7 & 4/7 \end{bmatrix} \\ |
A_1 &= c_1 r_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1/7 & 1/7 \end{bmatrix} = \begin{bmatrix} 3/7 & 3/7 \\ 4/7 & 4/7 \end{bmatrix} = A_1^2\\ |
||
A_2 &= c_2 r_2 = \begin{bmatrix} 1/7 \\ -1/7 \end{bmatrix} \begin{bmatrix} 4 & -3 \end{bmatrix} = \begin{bmatrix} 4/7 & -3/7 \\ -4/7 & 3/7 \end{bmatrix}. |
A_2 &= c_2 r_2 = \begin{bmatrix} 1/7 \\ -1/7 \end{bmatrix} \begin{bmatrix} 4 & -3 \end{bmatrix} = \begin{bmatrix} 4/7 & -3/7 \\ -4/7 & 3/7 \end{bmatrix}=A_2^2 ~. |
||
\end{align} </math> |
\end{align} </math> |
||
Revision as of 15:43, 17 December 2013
In matrix theory, the Frobenius covariants of a square matrix A are matrices Ai associated with the eigenvalues and eigenvectors of A.[1] Each covariant is a projection on the eigenspace associated with λi.
Frobenius covariants are the coefficients of Sylvester's formula, that expresses a function of a matrix f(A) as a linear combination of its values on the eigenvalues of A. They are named after the mathematician Ferdinand Frobenius.
Formal definition
Let A be a diagonalizable matrix with k distinct eigenvalues, λ1, …, λk. The Frobenius covariant Ai, for i = 1,…, k, is the matrix
Computing the covariants
The Frobenius covariants of a matrix A can be obtained from any eigendecomposition A = SDS−1, where S is non-singular and D is diagonal with Di,i = λi. If A has no multiple eigenvalues, then let ci be the ith left eigenvector of A, that is, the ith column of S; and let ri be the ith right eigenvector of A, namely the ith row of S−1. Then Ai = ciri.
If A has multiple eigenvalues then Ai = Σj cjrj, where the sum is over all rows and columns associated with the eigenvalue λi.[1]: p.521
Example
Consider the two-by-two matrix:
This matrix has two eigenvalues, 5 and −2. The corresponding eigen decomposition is
Hence the Frobenius covariants, manifestly projections, are