Jump to content

Friedländer synthesis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
m fmt refs
Line 1: Line 1:
{{Use dmy dates|date=May 2013}}
{{Use dmy dates|date=May 2013}}
The '''Friedländer synthesis''' is a [[chemical reaction]] of 2-aminobenzaldehydes<ref>[[Organic Syntheses]], Coll. Vol. 3, p.56 (1955); Vol. 28, p.11 (1948). ([http://www.orgsyn.org/orgsyn/prep.asp?prep=cv3p0056 Article])</ref> with [[ketone]]s to form [[quinoline]] derivatives.<ref>Friedländer, P. ''[[Chemische Berichte|Ber.]]'' '''1882''', ''15'', 2572.</ref><ref>Friedländer, P.; Gohring, C. F. ''[[Chemische Berichte|Ber.]]'' '''1883''', ''16'', 1833.</ref> It is named after German chemist [[Paul Friedländer (chemist)|Paul Friedländer]] (1857–1923).
The '''Friedländer synthesis''' is a [[chemical reaction]] of 2-aminobenzaldehydes<ref>[[Organic Syntheses]], Coll. Vol. 3, p. 56 (1955); Vol. 28, p. 11 (1948). ([http://www.orgsyn.org/orgsyn/prep.asp?prep=cv3p0056 Article])</ref> with [[ketone]]s to form [[quinoline]] derivatives.<ref>{{cite journal|author=Friedländer, P. |journal=[[Chemische Berichte]]|year=1882|volume=15|pages= 2572|doi=10.1002/cber.188201502219|title=Ueber o-Amidobenzaldehyd|issue=2}}</ref><ref>{{cite journal|author=Friedländer, P.; Gohring, C. F. |journal=[[Chemische Berichte|Ber.]]|year=1883|volume=16|pages= 1833|doi=10.1002/cber.18830160265|title=Ueber eine Darstellungsmethode im Pyridinkern substituirter Chinolinderivate|issue=2}}</ref> It is named after German chemist [[Paul Friedländer (chemist)|Paul Friedländer]] (1857–1923).


[[Image:Friedlaender Synthesis Scheme V.1.svg|center|450px|The Friedländer synthesis]]
[[Image:Friedlaender Synthesis Scheme V.1.svg|center|450px|The Friedländer synthesis]]


This reaction has been catalyzed by [[trifluoroacetic acid]],<ref>Shaabani, A.; Soleimani, E.; Badri, Z. ''[[Synth. Commun.]]'' '''2007''', ''37'', 629–635. ({{DOI|10.1080/00397910601055230}})</ref> [[toluenesulfonic acid]],<ref>Jia, C.-S.; Zhang, Z.; Tu, S.-J.; Wang, G.-W. ''[[Org. Biomol. Chem.]]'' '''2006''', ''4'', 104–110.</ref> [[iodine]],<ref>Wu, J.; Xia, H.-G.; Gao, K. ''[[Org. Biomol. Chem.]]'' '''2006''', ''4'', 126–129.</ref> and [[Lewis acid]]s.<ref>Varala, R.; Enugala, R.; Adapa, S. R. ''[[Synthesis (journal)|Synthesis]]'' '''2006''', 3825–3830.</ref>
This reaction has been catalyzed by [[trifluoroacetic acid]],<ref>{{cite journal|author=Shaabani, A.; Soleimani, E.; Badri, Z.|doi=10.1080/00397910601055230|title=Triflouroacetic Acid as an Efficient Catalyst for the Synthesis of Quinoline|year=2007|journal=Synthetic Communications|volume=37|issue=4|pages=629}}</ref> [[toluenesulfonic acid]],<ref>{{cite journal|author=Jia, C.-S.; Zhang, Z.; Tu, S.-J.; Wang, G.-W. |journal=[[Org. Biomol. Chem.]]|year=2006|volume=4|pages= 104–110|doi=10.1039/b513721g|title=Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: Comparative study of microwave irradiation versus conventional heating}}</ref> [[iodine]],<ref>{{cite journal|author=Wu, J.; Xia, H.-G.; Gao, K. |journal=[[Org. Biomol. Chem.]]|year=2006|volume=4|pages= 126–129|doi=10.1039/b514635f|title=Molecular iodine: A highly efficient catalyst in the synthesis of quinolines via Friedländer annulation}}</ref> and [[Lewis acid]]s.<ref>{{cite journal|author=Varala, R.; Enugala, R.; Adapa, S. R. |journal=[[Synthesis (journal)|Synthesis]]|year=2006|pages= 3825–3830}}</ref>


Several reviews have been published.<ref>Cheng, C.-C.; Yan, S.-J. ''[[Org. React.]]'' '''1982''', ''28'', 37. {{doi|10.1002/0471264180.or028.02}}</ref><ref>Manske, R. H. ''[[Chem. Rev.]]'' '''1942''', ''30'', 113. (Review)</ref><ref>Bergstrom, F. W. ''[[Chem. Rev.]]'' '''1944''', ''35'', 77. (Review)</ref><ref>Cheng, C. C.; Yan, S. J. ''Org. React.'' '''1982''', ''28'', 37. (Review)</ref>
Several reviews have been published.<ref>{{cite journal|author=Manske, R. H. |journal=[[Chem. Rev.]]|year=1942|volume=30|pages= 113|doi=10.1021/cr60095a006|title=The Chemistry of Quinolines}}</ref><ref>{{cite journal|author=Bergstrom, F. W. |journal=[[Chem. Rev.]]|year=1944|volume=35|pages= 77|doi=10.1021/cr60111a001|title=Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline|issue=2}}</ref><ref>{{cite journal|author=Cheng, C.-C.; Yan, S.-J. |doi=10.1002/0471264180.or028.02|chapter=The Friedländer Synthesis of Quinolines|title=Organic Reactions|year=2005|isbn=0471264180|year=1982|volume=28|pages= 37}}</ref>


==Mechanism==
==Mechanism==
Two viable [[reaction mechanism]]s exist for this reaction. In the first mechanism 2-amino substituted carbonyl compound '''1''' and carbonyl compound '''2''' react in a [[rate-limiting step]] to [[Aldol reaction|aldol]] adduct '''3'''. This intermediate loses water in an [[elimination reaction]] to [[Α,β-unsaturated carbonyl compound|unsaturated carbonyl compound]] '''4''' and then loses water again in [[imine]] formation to quinoline '''7'''. In the second mechanism the first step is [[Schiff base]] formation to '''5''' followed by Aldol reaction to '''6''' and elimination to '''7'''.<ref>''Recent Advances in the Friedlander Reaction'' Jose Marco-Contelles, Elena Perez-Mayoral,Abdelouahid Samadi, Marıa do Carmo Carreiras, and Elena Soriano [[Chem. Rev.]] 2009 {{DOI|10.1021/cr800482c}}</ref>
Two viable [[reaction mechanism]]s exist for this reaction. In the first mechanism 2-amino substituted carbonyl compound '''1''' and carbonyl compound '''2''' react in a [[rate-limiting step]] to [[Aldol reaction|aldol]] adduct '''3'''. This intermediate loses water in an [[elimination reaction]] to [[Α,β-unsaturated carbonyl compound|unsaturated carbonyl compound]] '''4''' and then loses water again in [[imine]] formation to quinoline '''7'''. In the second mechanism the first step is [[Schiff base]] formation to '''5''' followed by Aldol reaction to '''6''' and elimination to '''7'''.<ref>{{cite journal|author=Jose Marco-Contelles, Elena Perez-Mayoral, Abdelouahid Samadi, Marıa do Carmo Carreiras, and Elena Soriano |title=Recent Advances in the Friedlander Reaction|doi=10.1021/cr800482c|year=2009|journal=Chemical Reviews|volume=109|issue=6|pages=2652–71|pmid=19361199}}</ref>


:[[Image:FriedlanderReactionMechanism.svg|Friedländer synthesis reaction mechanism]]
:[[Image:FriedlanderReactionMechanism.svg|Friedländer synthesis reaction mechanism]]
The [[Pfitzinger reaction]] and the [[Niementowski quinoline synthesis]] are variations.
The [[Pfitzinger reaction]] and the [[Niementowski quinoline synthesis]] are variations of the Friedländer reaction.

==References==
{{Reflist}}


==See also==
==See also==
Line 21: Line 18:
*[[Povarov reaction]]
*[[Povarov reaction]]
*[[Skraup reaction]]
*[[Skraup reaction]]

==References==
{{Reflist}}


{{DEFAULTSORT:Friedlander synthesis}}
{{DEFAULTSORT:Friedlander synthesis}}

Revision as of 05:16, 1 February 2014

The Friedländer synthesis is a chemical reaction of 2-aminobenzaldehydes[1] with ketones to form quinoline derivatives.[2][3] It is named after German chemist Paul Friedländer (1857–1923).

The Friedländer synthesis
The Friedländer synthesis

This reaction has been catalyzed by trifluoroacetic acid,[4] toluenesulfonic acid,[5] iodine,[6] and Lewis acids.[7]

Several reviews have been published.[8][9][10]

Mechanism

Two viable reaction mechanisms exist for this reaction. In the first mechanism 2-amino substituted carbonyl compound 1 and carbonyl compound 2 react in a rate-limiting step to aldol adduct 3. This intermediate loses water in an elimination reaction to unsaturated carbonyl compound 4 and then loses water again in imine formation to quinoline 7. In the second mechanism the first step is Schiff base formation to 5 followed by Aldol reaction to 6 and elimination to 7.[11]

Friedländer synthesis reaction mechanism

The Pfitzinger reaction and the Niementowski quinoline synthesis are variations of the Friedländer reaction.

See also

References

  1. ^ Organic Syntheses, Coll. Vol. 3, p. 56 (1955); Vol. 28, p. 11 (1948). (Article)
  2. ^ Friedländer, P. (1882). "Ueber o-Amidobenzaldehyd". Chemische Berichte. 15 (2): 2572. doi:10.1002/cber.188201502219.
  3. ^ Friedländer, P.; Gohring, C. F. (1883). "Ueber eine Darstellungsmethode im Pyridinkern substituirter Chinolinderivate". Ber. 16 (2): 1833. doi:10.1002/cber.18830160265.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Shaabani, A.; Soleimani, E.; Badri, Z. (2007). "Triflouroacetic Acid as an Efficient Catalyst for the Synthesis of Quinoline". Synthetic Communications. 37 (4): 629. doi:10.1080/00397910601055230.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Jia, C.-S.; Zhang, Z.; Tu, S.-J.; Wang, G.-W. (2006). "Rapid and efficient synthesis of poly-substituted quinolines assisted by p-toluene sulphonic acid under solvent-free conditions: Comparative study of microwave irradiation versus conventional heating". Org. Biomol. Chem. 4: 104–110. doi:10.1039/b513721g.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Wu, J.; Xia, H.-G.; Gao, K. (2006). "Molecular iodine: A highly efficient catalyst in the synthesis of quinolines via Friedländer annulation". Org. Biomol. Chem. 4: 126–129. doi:10.1039/b514635f.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Varala, R.; Enugala, R.; Adapa, S. R. (2006). Synthesis: 3825–3830. {{cite journal}}: Missing or empty |title= (help)CS1 maint: multiple names: authors list (link)
  8. ^ Manske, R. H. (1942). "The Chemistry of Quinolines". Chem. Rev. 30: 113. doi:10.1021/cr60095a006.
  9. ^ Bergstrom, F. W. (1944). "Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline". Chem. Rev. 35 (2): 77. doi:10.1021/cr60111a001.
  10. ^ Cheng, C.-C.; Yan, S.-J. (1982). "Organic Reactions". 28: 37. doi:10.1002/0471264180.or028.02. ISBN 0471264180. {{cite journal}}: |chapter= ignored (help); Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  11. ^ Jose Marco-Contelles, Elena Perez-Mayoral, Abdelouahid Samadi, Marıa do Carmo Carreiras, and Elena Soriano (2009). "Recent Advances in the Friedlander Reaction". Chemical Reviews. 109 (6): 2652–71. doi:10.1021/cr800482c. PMID 19361199.{{cite journal}}: CS1 maint: multiple names: authors list (link)