Photon antibunching: Difference between revisions
m clean up, References after punctuation per WP:REFPUNC and WP:CITEFOOT using AWB (9345) |
|||
Line 78: | Line 78: | ||
== See also == |
== See also == |
||
* [[Correlation does not imply causation]] |
|||
* [[Degree of coherence]] |
* [[Degree of coherence]] |
||
* [[Fock state]] |
* [[Fock state]] |
Revision as of 12:24, 3 April 2014
This article needs additional citations for verification. (May 2008) |
Photon antibunching generally refers to a light field with photons more equally spaced than a coherent laser field,[1] a signature being signals at appropriate detectors which are anticorrelated[clarification needed]. More specifically, it can (but it need not[2]) refer to sub-Poissonian photon statistics, that is a photon number distribution for which the variance is less than the mean. Nevertheless this kind of statistics was not observed directly with photon number resolving detector[citation needed]. A coherent state, as output by a laser far above threshold has Poissonian statistics yielding random photon spacing; while a thermal light field has super-Poissonian statistics and yields bunched photon spacing. In the thermal (bunched) case, the number of fluctuations is larger than a coherent state; for an antibunched source they are smaller.[3]
The variance of the photon number distribution is
Using commutation relations, this can be written as
This can be written as
The second-order intensity correlation function (for zero delay time) is defined as
This quantity is basically the probability of detecting two simultaneous photons, normalized by the probability of detecting two photons at once for a random photon source. Here and after we assume stationary counting statistics.
Then we have
Then we see that sub-Poisson photon statistics, one definition of photon antibunching, is given by . We can equivalently express antibunching by where the Mandel Q Parameter is defined as
If the field had a classical stochastic process underlying it, say a positive definite probability distribution for photon number, the variance would have to be greater than or equal to the mean. This can be shown by an application of the Cauchy-Schwarz inequality to the definition of . Sub-Poissonian fields violate this, and hence are nonclassical in the sense that there can be no underlying positive definite probability distribution for photon number (or intensity).
Photon antibunching by this definition was first observed by Kimble, Mandel, and Dagenais in resonance fluorescence. A driven atom cannot emit two photons at once, and so in this case . An experiment with more precision that did not require subtraction of a background count rate was done for a single atom in an ion trap by Walther et al.
For historical reasons, another definition for photon antibunching is sometimes used. It can also be shown by an application of the Cauchy-Schwarz inequality to the time dependent intensity correlation function
It can be shown that for a classical positive definite probability distribution to exist (i.e. for the field to be classical) . Hence a rise in the second order intensity correlation function at early times is also nonclassical. This initial rise is sometimes referred to as photon antibunching.
Another way of looking at this time dependent correlation function, inspired by quantum trajectory theory is
where
with is the state conditioned on previous detection of a photon at time .
Sources
- Article based on text from Qwiki, reproduced under the GNU free documentation license: see Photon Antibunching
References
- ^ Anti-bunching and Entanglement - http://www.ucd.ie/speclab/UCDSOPAMS/peoplehtml/quantumoptics2006/lecture5.pdf
- ^ Singh, S (1983). "Antibunching, sub-poissonian photon statistics and finite bandwidth effects in resonance fluorescence". Optics Communications. 44 (4): 254–258. Bibcode:Singh1983254. doi:10.1016/0030-4018(83)90132-3.
{{cite journal}}
: Check|bibcode=
length (help) - ^ Paul, H (1982). "Photon antibunching". Reviews of Modern Physics. 54 (4): 1061–1102. Bibcode:1982RvMP...54.1061P. doi:10.1103/RevModPhys.54.1061.