Rectified 5-cubes: Difference between revisions
sp: editied→edited |
|||
Line 1: | Line 1: | ||
{| class=wikitable align=right width=500 |
{| class=wikitable align=right width=500 |
||
|- align=center |
|- align=center |
||
|[[File:5- |
|[[File:5-cube t0.svg|100px]]<BR>[[5-cube]]<BR>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node}} |
||
|[[File:5- |
|[[File:5-cube t1.svg|100px]]<BR>Rectified 5-cube<BR>{{CDD|node|4|node_1|3|node|3|node|3|node|3|node}} |
||
|[[File:5- |
|[[File:5-cube t2.svg|100px]]<BR>Birectified 5-cube<BR>{{CDD|node|4|node|3|node_1|3|node|3|node|3|node}} |
||
|[[File:5- |
|[[File:5-cube t3.svg|100px]]<BR>[[Rectified 5-orthoplex]]<BR>{{CDD|node|4|node|3|node|3|node|3|node_1|3|node}} |
||
|[[File:5- |
|[[File:5-cube t4.svg|100px]]<BR>[[5-orthoplex]]<BR>{{CDD|node|4|node|3|node|3|node|3|node|3|node_1}} |
||
|- |
|- |
||
!colspan=5|[[Orthogonal projection]]s in A<sub>5</sub> [[Coxeter plane]] |
!colspan=5|[[Orthogonal projection]]s in A<sub>5</sub> [[Coxeter plane]] |
||
Line 50: | Line 50: | ||
== Related polytopes== |
== Related polytopes== |
||
Thes polytopes are a part of 31 [[ |
Thes polytopes are a part of 31 [[Uniform polyteron#Uniform polyteron|uniform polytera]] generated from the regular [[5-cube]] or [[5-orthoplex]]. |
||
{{Penteract family}} |
{{Penteract family}} |
||
Line 60: | Line 60: | ||
* [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]: |
* [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]: |
||
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 |
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 |
||
** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', |
** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] |
||
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] |
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] |
||
*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] |
*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] |
Revision as of 21:43, 5 April 2014
5-cube |
Rectified 5-cube |
Birectified 5-cube |
Rectified 5-orthoplex |
5-orthoplex |
Orthogonal projections in A5 Coxeter plane |
---|
In five-dimensional geometry, a rectified 5-cube is a convex uniform 5-polytope, being a rectification of the regular 5-cube.
There are 5 degrees of rectifications of a 5-polytope, the zeroth here being the 5-cube, and the 4th and last being the 5-orthoplex. Vertices of the rectified 5-cube are located at the edge-centers of the 5-cube. Vertices of the birectified 5-ocube are located in the square face centers of the 5-cube.
Rectified 5-cube
Rectified 5-cube rectified penteract (rin) | ||
---|---|---|
Type | uniform 5-polytope | |
Schläfli symbol | r{4,3,3,3} | |
Coxeter diagram | = | |
4-faces | 42 | 10 32 |
Cells | 200 | 40 160 |
Faces | 400 | 80 320 |
Edges | 320 | |
Vertices | 80 | |
Vertex figure | Tetrahedral prism | |
Coxeter group | B5, [4,33], order 3840 | |
Dual | ||
Base point | (0,1,1,1,1,1)√2 | |
Circumradius | sqrt(2) = 1.414214 | |
Properties | convex, isogonal |
Alternate names
- Rectified penteract (acronym: rin) (Jonathan Bowers)
Construction
The rectified 5-cube may be constructed from the 5-cube by truncating its vertices at the midpoints of its edges.
Coordinates
The Cartesian coordinates of the vertices of the rectified 5-cube with edge length is given by all permutations of:
Images
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [10] | [8] | [6] |
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry | [4] | [4] |
Birectified 5-cube
Birectified 5-cube birectified penteract (nit) | ||
---|---|---|
Type | uniform 5-polytope | |
Schläfli symbol | 2r{4,3,3,3} | |
Coxeter diagram | = | |
4-faces | 42 | 10 32 |
Cells | 280 | 40 160 80 |
Faces | 640 | 320 320 |
Edges | 480 | |
Vertices | 80 | |
Vertex figure | {3}×{4} | |
Coxeter group | B5, [4,33], order 3840 D5, [32,1,1], order 1920 | |
Dual | ||
Base point | (0,0,1,1,1,1)√2 | |
Circumradius | sqrt(3/2) = 1.224745 | |
Properties | convex, isogonal |
Alternate names
- Birectified 5-cube/penteract
- Birectified pentacross/5-orthoplex/triacontiditeron
- Penteractitriacontiditeron (acronym: nit) (Jonathan Bowers)
- Rectified 5-demicube/demipenteract
Construction and coordinates
The birectified 5-cube may be constructed by birectifing the vertices of the 5-cube at of the edge length.
The Cartesian coordinates of the vertices of a birectified 5-cube having edge length 2 are all permutations of:
Images
Coxeter plane | B5 | B4 / D5 | B3 / D4 / A2 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [10] | [8] | [6] |
Coxeter plane | B2 | A3 | |
Graph | |||
Dihedral symmetry | [4] | [4] |
Related polytopes
Dim. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | n |
---|---|---|---|---|---|---|---|---|
Name | t{4} | r{4,3} | 2t{4,3,3} | 2r{4,3,3,3} | 3t{4,3,3,3,3} | 3r{4,3,3,3,3,3} | 4t{4,3,3,3,3,3,3} | ... |
Coxeter diagram |
||||||||
Images | ||||||||
Facets | {3} {4} |
t{3,3} t{3,4} |
r{3,3,3} r{3,3,4} |
2t{3,3,3,3} 2t{3,3,3,4} |
2r{3,3,3,3,3} 2r{3,3,3,3,4} |
3t{3,3,3,3,3,3} 3t{3,3,3,3,3,4} | ||
Vertex figure |
( )v( ) | { }×{ } |
{ }v{ } |
{3}×{4} |
{3}v{4} |
{3,3}×{3,4} | {3,3}v{3,4} |
Related polytopes
Thes polytopes are a part of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "5D uniform polytopes (polytera)". o3x3o3o4o - rin, o3o3x3o4o - nit
External links
- Weisstein, Eric W. "Hypercube". MathWorld.
- Olshevsky, George. "Measure polytope". Glossary for Hyperspace. Archived from the original on 4 February 2007.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary