Jump to content

Semiregular polytope: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 23: Line 23:
'''Semiregular figures Gosset enumerated:''' (his names in parentheses)
'''Semiregular figures Gosset enumerated:''' (his names in parentheses)
* [[Convex uniform honeycomb]]s, two 3D honeycombs:
* [[Convex uniform honeycomb]]s, two 3D honeycombs:
*#[[Tetrahedral-octahedral honeycomb]] (Simple tetroctahedric check), {{CDD|node_h1|4|node|3|node|4|node}} ↔ {{CDD|nodes_10ru|split2|node|4|node}}
*#[[Tetrahedral-octahedral honeycomb]] (Simple tetroctahedric check), {{CDD|node_h1|4|node|3|node|4|node}} ↔ {{CDD|nodes_10ru|split2|node|4|node}} (Also [[quasiregular polytope]])
*#[[Gyrated alternated cubic honeycomb]] (Complex tetroctahedric check), {{CDD|node|3|node|6|node_h|2x|node_h|infin|node}}
*#[[Gyrated alternated cubic honeycomb]] (Complex tetroctahedric check), {{CDD|node|3|node|6|node_h|2x|node_h|infin|node}}
* [[Uniform polychoron|Uniform polychora]], three [[4-polytope]]s:
* [[Uniform polychoron|Uniform polychora]], three [[4-polytope]]s:
Line 41: Line 41:


*[[Hyperbolic uniform honeycomb]]s, 3D honeycombs:
*[[Hyperbolic uniform honeycomb]]s, 3D honeycombs:
*# [[Alternated order-5 cubic honeycomb]], {{CDD|node_h1|4|node|3|node|5|node}} ↔ {{CDD|nodes_10ru|split2|node|5|node}}
*# [[Alternated order-5 cubic honeycomb]], {{CDD|node_h1|4|node|3|node|5|node}} ↔ {{CDD|nodes_10ru|split2|node|5|node}} (Also [[quasiregular polytope]])
*# [[Hyperbolic tetrahedral-octahedral honeycomb|Tetrahedral-octahedral honeycomb]], {{CDD|label4|branch|3ab|branch_10l}}
*# [[Hyperbolic tetrahedral-octahedral honeycomb|Tetrahedral-octahedral honeycomb]], {{CDD|label4|branch|3ab|branch_10l}}
*# [[Tetrahedron-icosahedron honeycomb]], {{CDD|label5|branch|3ab|branch_10l}}
*# [[Tetrahedron-icosahedron honeycomb]], {{CDD|label5|branch|3ab|branch_10l}}
Line 47: Line 47:
*# [[Rectified order-6 tetrahedral honeycomb]], {{CDD|node|3|node_1|3|node|6|node}}
*# [[Rectified order-6 tetrahedral honeycomb]], {{CDD|node|3|node_1|3|node|6|node}}
*# [[Rectified square tiling honeycomb]], {{CDD|node|4|node_1|4|node|3|node}}
*# [[Rectified square tiling honeycomb]], {{CDD|node|4|node_1|4|node|3|node}}
*# [[Alternated order-6 cubic honeycomb]], {{CDD|node_h1|4|node|3|node|6|node}} ↔ {{CDD|nodes_10ru|split2|node|6|node}}
*# [[Alternated order-6 cubic honeycomb]], {{CDD|node_h1|4|node|3|node|6|node}} ↔ {{CDD|nodes_10ru|split2|node|6|node}} (Also quasiregular)
*# [[Alternated hexagonal tiling honeycomb]], {{CDD||node_h1|6|node|3|node|3|node}} ↔ {{CDD|branch_10ru|split2|node|3|node}}
*# [[Alternated hexagonal tiling honeycomb]], {{CDD||node_h1|6|node|3|node|3|node}} ↔ {{CDD|branch_10ru|split2|node|3|node}}
*# [[Alternated square tiling honeycomb]], {{CDD|node_h1|4|node|4|node|3|node}} ↔ {{CDD|nodes_10ru|split2-44|node|3|node}}
*# [[Alternated square tiling honeycomb]], {{CDD|node_h1|4|node|4|node|3|node}} ↔ {{CDD|nodes_10ru|split2-44|node|3|node}} (Also quasiregular)
*# [[Cubic-square tiling honeycomb]], {{CDD|label4|branch_10r|4a4b|branch}}
*# [[Cubic-square tiling honeycomb]], {{CDD|label4|branch_10r|4a4b|branch}}
*# [[Tetrahedral-triangular tiling honeycomb]], {{CDD|label6|branch|3ab|branch_10l}}
*# [[Tetrahedral-triangular tiling honeycomb]], {{CDD|label6|branch|3ab|branch_10l}}

Revision as of 02:50, 23 May 2014

Gosset's figures
3D honeycombs

Simple tetroctahedric check

Complex tetroctahedric check
4D polytopes

Tetroctahedric

Octicosahedric

Tetricosahedric

In geometry, by Thorold Gosset's definition a semiregular polytope is usually taken to be a polytope that is vertex-uniform and has all its facets being regular polytopes. E.L. Elte compiled a longer list in 1912 as The Semiregular Polytopes of the Hyperspaces which included a wider definition.

Gosset's list

In three-dimensional space and below, the terms semiregular polytope and uniform polytope have identical meanings, because all uniform polygons must be regular. However, since not all uniform polyhedra are regular, the number of semiregular polytopes in dimensions higher than three is much smaller than the number of uniform polytopes in the same number of dimensions.

The three convex semiregular polychora (4-polytopes) are the rectified 5-cell, snub 24-cell and rectified 600-cell. The only semiregular polytopes in higher dimensions are the k21 polytopes, where the rectified 5-cell is the special case of k = 0.

Semiregular polytopes can be extended to semiregular honeycombs. The semiregular Euclidean honeycombs are the tetrahedral-octahedral honeycomb (3D), gyrated alternated cubic honeycomb (3D) and the 521 honeycomb (8D).

Semiregular figures Gosset enumerated: (his names in parentheses)

Beyond Gosset's list

There are also hyperbolic uniform honeycombs composed of only regular cells, including:

See also

References

  • Coxeter, H. S. M. (1973). Regular Polytopes (3rd ed.). New York: Dover Publications. ISBN 0-486-61480-8.
  • Gosset, Thorold (1900). "On the regular and semi-regular figures in space of n dimensions". Messenger of Mathematics. 29: 43–48.
  • Elte, E. L. (1912). The Semiregular Polytopes of the Hyperspaces. Groningen: University of Groningen. ISBN 1-4181-7968-X.