Jump to content

Askey–Wilson polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Link disambiguation
m References: Journal cites, Added 2 dois to journal cites using AWB (10365)
Line 15: Line 15:


==References==
==References==
*{{Citation | authorlink=Richard Askey | last1=Askey | first1=Richard | last2=Wilson | first2=James | title=Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials | isbn=978-0-8218-2321-7 | mr=783216 | year=1985 | journal=Memoirs of the American Mathematical Society | issn=0065-9266 | volume=54 | issue=319 | pages=iv+55|url=http://books.google.com/books?id=9q9o03nD_xsC}}
*{{Citation | authorlink=Richard Askey | last1=Askey | first1=Richard | last2=Wilson | first2=James | title=Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials | isbn=978-0-8218-2321-7 | mr=783216 | year=1985 | journal=Memoirs of the American Mathematical Society | issn=0065-9266 | volume=54 | issue=319 | pages=iv+55|url=http://books.google.com/books?id=9q9o03nD_xsC | doi=10.1090/memo/0319}}
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
*{{dlmf|id=18.28|title=Askey-Wilson class|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
*{{dlmf|id=18.28|title=Askey-Wilson class|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
*{{Citation | first=Tom H. | last=Koornwinder | title=[http://www.scholarpedia.org/article/Askey-Wilson_polynomial Askey-Wilson polynomial] | journal=Scholarpedia | volume=7 | year=2012 | issue=7 | pages=7761}}
*{{Citation | first=Tom H. | last=Koornwinder | title=[http://www.scholarpedia.org/article/Askey-Wilson_polynomial Askey-Wilson polynomial] | journal=Scholarpedia | volume=7 | year=2012 | issue=7 | pages=7761 | doi=10.4249/scholarpedia.7761}}


{{DEFAULTSORT:Askey-Wilson polynomials}}
{{DEFAULTSORT:Askey-Wilson polynomials}}

Revision as of 16:02, 13 August 2014

In mathematics, the Askey–Wilson polynomials (or q-Wilson polynomials) are a family of orthogonal polynomials introduced by Askey and Wilson (1985) as q-analogs of the Wilson polynomials. They include many of the other orthogonal polynomials in 1 variable as special or limiting cases, described in the Askey scheme. Askey–Wilson polynomials are the special case of Macdonald polynomials (or Koornwinder polynomials) for the non-reduced affine root system of type (C
1
, C1), and their 4 parameters a, b, c, d correspond to the 4 orbits of roots of this root system.

They are defined by

where φ is a basic hypergeometric function and x = cos(θ) and (,,,)n is the q-Pochhammer symbol. Askey–Wilson functions are a generalization to non-integral values of n.

Askey-Wilson polynomials are the special case of Koornwinder polynomials (or Macdonald polynomials) for the non-reduced root system of type (C
1
, C1).

See also

References

  • Askey, Richard; Wilson, James (1985), "Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials", Memoirs of the American Mathematical Society, 54 (319): iv+55, doi:10.1090/memo/0319, ISBN 978-0-8218-2321-7, ISSN 0065-9266, MR 0783216
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Askey-Wilson class", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Koornwinder, Tom H. (2012), "Askey-Wilson polynomial", Scholarpedia, 7 (7): 7761, doi:10.4249/scholarpedia.7761 {{citation}}: External link in |title= (help)CS1 maint: unflagged free DOI (link)