Jump to content

Hilbert–Kunz function: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
mNo edit summary
mNo edit summary
Line 9: Line 9:
== References ==
== References ==
{{reflist}}
{{reflist}}

*Aldo Conca, [http://www.dima.unige.it/%7Econca/Articoli%20Conca%20PDF/PDF%20da%20rivista/%281996%20%29%20Conca%20-%20Hilbert-Kunz%20function%20of%20monomial%20ideals%20and%20binomial%20hypersurfaces.pdf Hilbert-Kunz function of monomial ideals and binomial hypersurfaces]
==Bibliography==
*E. Kunz, "On noetherian rings of characteristic p," Am. J. Math, 98, (1976), 999–1013. 1
*E. Kunz, "On noetherian rings of characteristic p," Am. J. Math, 98, (1976), 999–1013. 1
*{{cite arXiv |first1=Lance |last1=Edward Miller |first2=Irena |last2=Swanson |url=http://arxiv.org/abs/1206.1015 |title=Hilbert-Kunz functions of 2 x 2 determinantal rings |year=2012 |eprint=1206.1015}}
*{{cite arXiv |first1=Lance |last1=Edward Miller |first2=Irena |last2=Swanson |url=http://arxiv.org/abs/1206.1015 |title=Hilbert-Kunz functions of 2 x 2 determinantal rings |year=2012 |eprint=1206.1015}}

Revision as of 22:12, 23 August 2014

In algebra, the Hilbert–Kunz function of a local ring (R, m) of prime characteristic p is the function

where q is a power of p and m[q] is the ideal generated by the q-th powers of elements of the maximal ideal m. [1]

The notion was introduced by E. Kunz, who used it to characterize a regular ring as a Noetherian ring in which the Frobenius morphism is flat.

References

  1. ^ Conca, Aldo (1996). "Hilbert-Kunz function of monomial ideals and binomial hypersurfaces" (PDF). http://www.dima.unige.it. Springer Verlag 90, 287 - 300. Retrieved 23 August 2014. {{cite web}}: External link in |website= (help); line feed character in |publisher= at position 20 (help); line feed character in |title= at position 13 (help)

Bibliography

  • E. Kunz, "On noetherian rings of characteristic p," Am. J. Math, 98, (1976), 999–1013. 1
  • Edward Miller, Lance; Swanson, Irena (2012). "Hilbert-Kunz functions of 2 x 2 determinantal rings". arXiv:1206.1015. {{cite arXiv}}: Unknown parameter |url= ignored (help)