Whitehead's lemma: Difference between revisions
Appearance
Content deleted Content added
m Stub-sorting. You can help! |
m fromat |
||
Line 1: | Line 1: | ||
'''Whitehead |
'''Whitehead's lemma''' states that a [[matrix (mathematics)|matrix]] of the form <math> |
||
\begin{bmatrix} |
\begin{bmatrix} |
||
u & 0 \\ |
u & 0 \\ |
||
0 & u^{-1} \end{bmatrix}</math> is equivalent to |
0 & u^{-1} \end{bmatrix}</math> is equivalent to [[identity matrix|identity]] by elementary transformations: |
||
<math> |
:<math> |
||
\begin{bmatrix} |
\begin{bmatrix} |
||
u & 0 \\ |
u & 0 \\ |
||
0 & u^{-1} \end{bmatrix} = e_{21}(u^{-1}) e_{12}(1-u) e_{21}(-1) e_{12}(1-u^{-1}) </math> |
0 & u^{-1} \end{bmatrix} = e_{21}(u^{-1}) e_{12}(1-u) e_{21}(-1) e_{12}(1-u^{-1}). </math> |
||
Here <math>e_{ij}(s)</math> indicates a matrix whose diagonal block is 1 and <math>ij^{th}</math> entry is <math>s</math>. |
Here, <math>e_{ij}(s)</math> indicates a matrix whose diagonal block is 1 and <math>ij^{th}</math> entry is <math>s</math>. |
||
{{ |
{{algebra-stub}} |
||
[[Category:Linear algebra]] |