Truncated order-6 square tiling: Difference between revisions
Line 30: | Line 30: | ||
|- |
|- |
||
![[Coxeter notation|Coxeter]]<BR>([[Orbifold notation|orbifold]]) |
![[Coxeter notation|Coxeter]]<BR>([[Orbifold notation|orbifold]]) |
||
![(4,4,3)]<BR>{{CDD|node_c1|split1|branch_c2 |
![(4,4,3)]<BR>{{CDD|node_c1|split1-44|branch_c2}}<BR>(*443) |
||
![(4,1<sup>+</sup>,4,3)]<BR>([[3232 symmetry|*3232]]) |
![(4,1<sup>+</sup>,4,3)]<BR>{{CDD|labelh|node|split1-44|branch_c2}}<BR>([[3232 symmetry|*3232]]) |
||
![(4,4,3<sup>+</sup>)]<BR>(3*22) |
![(4,4,3<sup>+</sup>)]<BR>{{CDD|node_c1|split1-44|branch_h2h2}}<BR>(3*22) |
||
|- |
|- |
||
!colspan=4|Rotation subgroups |
!colspan=4|Rotation subgroups |
||
Line 45: | Line 45: | ||
|- |
|- |
||
!Coxeter<BR>(orbifold) |
!Coxeter<BR>(orbifold) |
||
![(4,4,3)]<sup>+</sup><BR>(443) |
![(4,4,3)]<sup>+</sup><BR>{{CDD|node_h2|split1-44|branch_h2h2}}<BR>(443) |
||
!colspan=2|[(4,1<sup>+</sup>,4,3<sup>+</sup>)]<BR>(3232) |
!colspan=2|[(4,1<sup>+</sup>,4,3<sup>+</sup>)]<BR>{{CDD|labelh|node|split1-44|branch_h2h2}}<BR>(3232) |
||
|} |
|} |
||
Revision as of 04:33, 30 October 2014
Truncated order-6 square tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 8.8.6 |
Schläfli symbol | t{4,6} |
Wythoff symbol | 2 6 | 4 |
Coxeter diagram | |
Symmetry group | [6,4], (*642) [(3,3,4)], (*334) |
Dual | Order-4 hexakis hexagonal tiling |
Properties | Vertex-transitive |
In geometry, the truncated order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,6}.
Uniform colorings
Symmetry
The dual tiling represents the fundamental domains of the *443 orbifold symmetry. There are two reflective subgroup kaleidoscopic constructed from [(4,4,3)] by removing one or two of three mirrors. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled as 642 symmetry by adding a mirror bisecting the fundamental domain.
A larger subgroup is constructed [(4,4,3*)], index 6, as (3*22) with gyration points removed, becomes (*222222).
Subgroup index | 1 | 2 | |
---|---|---|---|
Diagram | |||
Coxeter (orbifold) |
[(4,4,3)] (*443) |
[(4,1+,4,3)] (*3232) |
[(4,4,3+)] (3*22) |
Rotation subgroups | |||
Subgroup index | 2 | 4 | |
Diagram | |||
Coxeter (orbifold) |
[(4,4,3)]+ (443) |
[(4,1+,4,3+)] (3232) |
Related polyhedra and tiling
From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular order-4 hexagonal tiling.
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.
Uniform tetrahexagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | |||||||||||
= = = |
= |
= = = |
= |
= = = |
= |
||||||
{6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
Uniform duals | |||||||||||
V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
Alternations | |||||||||||
[1+,6,4] (*443) |
[6+,4] (6*2) |
[6,1+,4] (*3222) |
[6,4+] (4*3) |
[6,4,1+] (*662) |
[(6,4,2+)] (2*32) |
[6,4]+ (642) | |||||
= |
= |
= |
= |
= |
= |
||||||
h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} |
It can also be generated from the (4 4 3) hyperbolic tilings:
Uniform (4,4,3) tilings | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [(4,4,3)] (*443) | [(4,4,3)]+ (443) |
[(4,4,3+)] (3*22) |
[(4,1+,4,3)] (*3232) | |||||||
h{6,4} t0(4,4,3) |
h2{6,4} t0,1(4,4,3) |
{4,6}1/2 t1(4,4,3) |
h2{6,4} t1,2(4,4,3) |
h{6,4} t2(4,4,3) |
r{6,4}1/2 t0,2(4,4,3) |
t{4,6}1/2 t0,1,2(4,4,3) |
s{4,6}1/2 s(4,4,3) |
hr{4,6}1/2 hr(4,3,4) |
h{4,6}1/2 h(4,3,4) |
q{4,6} h1(4,3,4) |
Uniform duals | ||||||||||
V(3.4)4 | V3.8.4.8 | V(4.4)3 | V3.8.4.8 | V(3.4)4 | V4.6.4.6 | V6.8.8 | V3.3.3.4.3.4 | V(4.4.3)2 | V66 | V4.3.4.6.6 |
*n42 symmetry mutation of truncated tilings: n.8.8 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *n42 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
*242 [2,4] |
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] | ||||
Truncated figures |
|||||||||||
Config. | 2.8.8 | 3.8.8 | 4.8.8 | 5.8.8 | 6.8.8 | 7.8.8 | 8.8.8 | ∞.8.8 | |||
n-kis figures |
|||||||||||
Config. | V2.8.8 | V3.8.8 | V4.8.8 | V5.8.8 | V6.8.8 | V7.8.8 | V8.8.8 | V∞.8.8 |
See also
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.