Jump to content

Steiner ellipse: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Computation: wikilinks, sp, wording
Line 18: Line 18:
<math> \underline{\underline{S}} = \begin{bmatrix} s_{xx} & s_{xy} \\ s_{xy} & s_{yy} \end{bmatrix} </math>
<math> \underline{\underline{S}} = \begin{bmatrix} s_{xx} & s_{xy} \\ s_{xy} & s_{yy} \end{bmatrix} </math>


are 3 times the squared lengths of the [[semi-major axis]] and [[semi-minor axis]]; the corresponding [[eigenvector]]s relate to the orientation.{{cn|date=October 2014}} This approach generalises to higher dimensions.
are 3 times the squared lengths of the [[semi-major axis]] and [[semi-minor axis]]; the corresponding [[eigenvector]]s relate to the orientation.{{cn|date=October 2014}} This approach generalizes to higher dimensions.


==References==
==References==

Revision as of 23:34, 10 November 2014

The Steiner ellipse of an isosceles triangle. The three line segments inside the triangle are the triangle's medians, each bisecting a side. The medians coincide at the triangle's centroid, which is also the center of the Steiner ellipse.

In geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse (ellipse that touches the triangle at its vertices) whose center is the triangle's centroid.[1] Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.

The area of the Steiner ellipse equals the area of the triangle times and hence is 4 times the area of the Steiner inellipse. The Steiner ellipse has the least area of any ellipse circumscribed about the triangle.

Computation

Given a triangle with vertices

,

the linear problem

,

can be solved, and except for the equilateral triangle, the eigenvalues of the matrix form of the solution

are 3 times the squared lengths of the semi-major axis and semi-minor axis; the corresponding eigenvectors relate to the orientation.[citation needed] This approach generalizes to higher dimensions.

References

  1. ^ Weisstein, Eric W. "Steiner Circumellipse." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/SteinerCircumellipse.html