Jump to content

Locally free sheaf: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
mNo edit summary
No edit summary
Line 6: Line 6:
<!--
<!--
Example: any topological vector bundle on a [[compact space]] ''X'' can be thought of as a locally free <math>\mathcal{O}_X</math>-module where <math>\mathcal{O}_X</math> is the sheaf of rings of continuous functions on ''X'', by [[Swan's theorem]]. Indeed, take ''R'' to be the ring of continuous functions on ''X''. Then Swan's theorem says the functor <math>E \mapsto \Gamma(X, E)</math> from the category of vector bundles on ''X'' to the category of finitely generated projective module over ''R'' is an equivalence of categories.-->
Example: any topological vector bundle on a [[compact space]] ''X'' can be thought of as a locally free <math>\mathcal{O}_X</math>-module where <math>\mathcal{O}_X</math> is the sheaf of rings of continuous functions on ''X'', by [[Swan's theorem]]. Indeed, take ''R'' to be the ring of continuous functions on ''X''. Then Swan's theorem says the functor <math>E \mapsto \Gamma(X, E)</math> from the category of vector bundles on ''X'' to the category of finitely generated projective module over ''R'' is an equivalence of categories.-->

==Algebraic vector bundles==
In [[mathematics]], an '''algebraic vector bundle''' is a [[vector bundle]] for which all the [[transition map]]s are [[algebraic function]]s. All <math>SU(2)</math>-[[instanton]]s over the [[sphere]] <math>S^4</math> are algebraic vector bundles.{{fact|date=June 2014}}


==See also==
==See also==
* [[Coherent sheaf]], in particular [[Picard group]]
* [[Coherent sheaf]], in particular [[Picard group]]
* [[Swan's theorem]]
* [[Swan's theorem]]
* [[Algebraic vector bundles]]


==References==
==References==

Revision as of 20:48, 29 November 2014

In sheaf theory, a field of mathematics, a sheaf of -modules on a ringed space is called locally free if for each point , there is an open neighborhood of such that is free as an -module. This implies that , the stalk of at , is free as a -module for all . The converse is true if is moreover coherent. If is of finite rank for every , then is said to be of rank

Examples

Let . Then any finitely generated projective module over R can be viewed as a locally free -module. (cf. Hartshorne.)

See also

References

  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
  • Sections 0.5.3 and 0.5.4 of Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083.