Jump to content

Montréalone: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Danstcyr (talk | contribs)
No edit summary
Danstcyr (talk | contribs)
No edit summary
Line 5: Line 5:


== Synthesis and reactivity ==
== Synthesis and reactivity ==
Montréalones are a class of unsaturated 5-membered [[wikt: organophosphorus|organophosphorus]] heterocycle incorporating, within their ring system, overlapping [[azomethine ylide]] and [[Wittig reaction#Wittig reagents|phosphorus ylide]] moieties.<ref>Reissig, H.-U.; Zimmer, R., Münchnones—New Facets after 50 Years. ''Angew. Chem. Int. Edit.'' '''2014''', ''53'', 9708. ({{DOI|10.1002/anie.201405092}})</ref><ref name ="St-Cyr2007">St. Cyr, D. J.; Arndtsen, B. A., A New Use of Wittig-type Reagents as 1,3-Dipolar Cycloaddition Precursors and in [[Pyrrole]] Synthesis. ''J. Am. Chem. Soc.'' '''2007''', ''129'', 12366. ({{DOI|10.1021/ja074330w}})</ref> They are used as [[1,3-dipolar cycloaddition]] reagents in [[One-pot synthesis|one-pot reactions]] involving [[wikt:dipolarophile|dipolarophiles]] such as [[imine]]s, [[alkene]]s, and [[alkyne]]s to respectively afford [[imidazole]]s,<ref>Aly, S.; Romashko, M.; Arndtsen, B. A., Multicomponent Synthesis of Substituted and Fused-Ring Imidazoles via Phospha-münchnone Cycloaddition. ''J. Org. Chem.'' '''2015''', ''80'', 2709. ({{DOI|10.1021/jo5028936}})</ref> 2-[[pyrroline]]s,<ref>Morin, M. S. T.; Arndtsen, B. A., Chiral Phosphorus-Based 1,3-Dipoles: A Modular Approach to Enantioselective 1,3-Dipolar Cycloaddition and Polycyclic 2-Pyrroline Synthesis. ''Org. Lett.'' '''2014''', ''16'', 1056. ({{DOI|10.1021/ol4035512}})</ref> and [[pyrrole]]s.<ref>St-Cyr, D. J.; Morin, M. S. T.; Belanger-Gariepy, F.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N., Phospha-Münchnones: Electronic Structures and 1,3-Dipolar Cycloadditions. ''J. Org. Chem.'' '''2010''', ''75'', 4261. ({{DOI|10.1021/jo1008383}})</ref> Ring-chain [[Tautomer#Valence tautomerism|valence tautomerism]] allows montréalones to display variable degrees of equilibrium and structural blending with ''N''-acylamino Wittig forms.<ref>Krenske, E. H.; Houk, K. N.; Arndtsen, B. A.; St. Cyr, D. J., Cyclic 1,3-Dipoles or Acyclic Phosphonium Ylides? Electronic Characterization of "Montréalones". ''J. Am. Chem. Soc.'' '''2008''', ''130'', 10052. ({{DOI|10.1021/ja802646f}})</ref> They are synthesized by deprotonating the [[phosphonium salt]] products of organophosphorus(III) compounds and ''N''-acyliminium ions (generated in situ from imines and [[acyl chloride|acid chlorides]]). In one pot reactions, [[Phosphite#Synthesis_of_phosphite_esters|phosphites]] and [[phosphonite]]s as phosphorus(III) reagent provide the required [[nucleophile|nucleophilicity]]/[[electrophile|electrophilicity]] balance to facilitate dipole generation and reactivity.<ref name ="St-Cyr2007"/>
Montréalones are a class of unsaturated 5-membered [[wikt: organophosphorus|organophosphorus]] heterocycle incorporating, within their ring system, overlapping [[azomethine ylide]] and [[Wittig reaction#Wittig reagents|phosphorus ylide]] moieties.<ref>Reissig, H.-U.; Zimmer, R., Münchnones—New Facets after 50 Years. ''Angew. Chem. Int. Edit.'' '''2014''', ''53'', 9708. ({{DOI|10.1002/anie.201405092}})</ref><ref name ="St-Cyr2007">St. Cyr, D. J.; Arndtsen, B. A., A New Use of Wittig-type Reagents as 1,3-Dipolar Cycloaddition Precursors and in [[Pyrrole]] Synthesis. ''J. Am. Chem. Soc.'' '''2007''', ''129'', 12366. ({{DOI|10.1021/ja074330w}})</ref> They are used as [[1,3-dipolar cycloaddition]] reagents in [[One-pot synthesis|one-pot reactions]] involving [[wikt:dipolarophile|dipolarophiles]] such as [[imine]]s, [[alkene]]s, and [[alkyne]]s to respectively afford [[imidazole]]s,<ref>Aly, S.; Romashko, M.; Arndtsen, B. A., Multicomponent Synthesis of Substituted and Fused-Ring Imidazoles via Phospha-münchnone Cycloaddition. ''J. Org. Chem.'' '''2015''', ''80'', 2709. ({{DOI|10.1021/jo5028936}})</ref> 2-[[pyrroline]]s,<ref>Morin, M. S. T.; Arndtsen, B. A., Chiral Phosphorus-Based 1,3-Dipoles: A Modular Approach to Enantioselective 1,3-Dipolar Cycloaddition and Polycyclic 2-Pyrroline Synthesis. ''Org. Lett.'' '''2014''', ''16'', 1056. ({{DOI|10.1021/ol4035512}})</ref> and [[pyrrole]]s.<ref>St-Cyr, D. J.; Morin, M. S. T.; Belanger-Gariepy, F.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N., Phospha-Münchnones: Electronic Structures and 1,3-Dipolar Cycloadditions. ''J. Org. Chem.'' '''2010''', ''75'', 4261. ({{DOI|10.1021/jo1008383}})</ref> Ring-chain [[Tautomer#Valence tautomerism|valence tautomerism]] allows montréalones to display variable degrees of equilibrium and structural blending with ''N''-acylamino [[Wittig reaction|Wittig]] forms.<ref>Krenske, E. H.; Houk, K. N.; Arndtsen, B. A.; St. Cyr, D. J., Cyclic 1,3-Dipoles or Acyclic Phosphonium Ylides? Electronic Characterization of "Montréalones". ''J. Am. Chem. Soc.'' '''2008''', ''130'', 10052. ({{DOI|10.1021/ja802646f}})</ref> They are synthesized by deprotonating the [[phosphonium salt]] products of [[Organophosphorus_compound#Organophosphorus.28III.29_compounds.2C_main_categories |organophosphorus(III) compounds]] and ''N''-acyliminium ions (generated in situ from imines and [[acyl chloride|acid chlorides]]). In one pot reactions, [[Phosphite#Synthesis_of_phosphite_esters|phosphites]] and [[phosphonite]]s as phosphorus(III) reagent provide the required [[nucleophile|nucleophilicity]]/[[electrophile|electrophilicity]] balance to facilitate dipole generation and reactivity.<ref name ="St-Cyr2007"/>


Cycloaddition reactions of asymmetric [[1,3-dipole]]s and dipolarophiles can lead to [[isomer]]ic product mixtures, particularly with münchnones and alkynes in the synthesis of pyrroles.<ref>Lubell, W.; St-Cyr, D.; Dufour-Gallant, J.; Hopewell, R.; Boutard, N.; Kassem, T.; Dörr, A.; Zelli, R., {{cite web |url= https://www.thieme.de/en/thieme-chemistry/sos-knowledge-updates-2013-58727.htm |title= 1H-Pyrroles (Update 2013)}} ''Science of Synthesis'' '''2013''', ''2013/1'', 157-388.</ref><ref>Gribble, G. W. In ''Oxazoles: Synthesis, Reactions, and Spectroscopy'', A; Palmer, D. C., Ed.; Wiley: New York, 2003; Vol. 60. ({{DOI|10.1002/0471428035.ch4}})</ref><ref>Gingrich, H. L.; Baum, J. S. In ''Oxazoles, Chemistry of Heterocyclic Compounds''; Turchi, I. J., Ed.; Wiley: New York, 1986; Vol. 45. ({{DOI|10.1002/9780470187289.ch4}})</ref> In contrast to related [[Diels-Alder reactions]], rationalization of [[wikt:regioisomeric|regioisomeric]] bias using conventional [[Diels–Alder_reaction#Regioselectivity|frontier molecular orbital]] (FMO) theory fails. The complimentary use of montéalones and münchnones allows product mixtures to be avoided, and highlights the need to consider the required geometrical changes involved in product formation.<ref>Morin, M. S. T.; St-Cyr, D. J.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N., Modular Mesoionics: Understanding and Controlling Regioselectivity in 1,3-Dipolar Cycloadditions of Münchnone Derivatives. ''J. Am. Chem. Soc.'' '''2013''', ''135'', 17349. ({{DOI|10.1021/ja406833q}})</ref>
Cycloaddition reactions of asymmetric [[1,3-dipole]]s and dipolarophiles can lead to [[isomer]]ic product mixtures, particularly with münchnones and alkynes in the synthesis of pyrroles.<ref>Lubell, W.; St-Cyr, D.; Dufour-Gallant, J.; Hopewell, R.; Boutard, N.; Kassem, T.; Dörr, A.; Zelli, R., {{cite web |url= https://www.thieme.de/en/thieme-chemistry/sos-knowledge-updates-2013-58727.htm |title= 1H-Pyrroles (Update 2013)}} ''Science of Synthesis'' '''2013''', ''2013/1'', 157-388.</ref><ref>Gribble, G. W. In ''Oxazoles: Synthesis, Reactions, and Spectroscopy'', A; Palmer, D. C., Ed.; Wiley: New York, 2003; Vol. 60. ({{DOI|10.1002/0471428035.ch4}})</ref><ref>Gingrich, H. L.; Baum, J. S. In ''Oxazoles, Chemistry of Heterocyclic Compounds''; Turchi, I. J., Ed.; Wiley: New York, 1986; Vol. 45. ({{DOI|10.1002/9780470187289.ch4}})</ref> In contrast to related [[Diels-Alder reactions]], rationalization of [[wikt:regioisomeric|regioisomeric]] bias using conventional [[Diels–Alder_reaction#Regioselectivity|frontier molecular orbital]] (FMO) theory fails. The complimentary use of montéalones and münchnones allows product mixtures to be avoided and highlights the need to include reactant geometrical changes in the rationalization process.<ref>Morin, M. S. T.; St-Cyr, D. J.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N., Modular Mesoionics: Understanding and Controlling Regioselectivity in 1,3-Dipolar Cycloadditions of Münchnone Derivatives. ''J. Am. Chem. Soc.'' '''2013''', ''135'', 17349. ({{DOI|10.1021/ja406833q}})</ref>
== See also ==
== See also ==

Revision as of 04:46, 18 March 2015

This sandbox is in the article namespace. Either move this page into your userspace, or remove the {{User sandbox}} template.

Montréalones (synonym : phospha-münchnones) are mesoionic heterocyclic chemical compounds.

Synthesis and reactivity

Montréalones are a class of unsaturated 5-membered organophosphorus heterocycle incorporating, within their ring system, overlapping azomethine ylide and phosphorus ylide moieties.[1][2] They are used as 1,3-dipolar cycloaddition reagents in one-pot reactions involving dipolarophiles such as imines, alkenes, and alkynes to respectively afford imidazoles,[3] 2-pyrrolines,[4] and pyrroles.[5] Ring-chain valence tautomerism allows montréalones to display variable degrees of equilibrium and structural blending with N-acylamino Wittig forms.[6] They are synthesized by deprotonating the phosphonium salt products of organophosphorus(III) compounds and N-acyliminium ions (generated in situ from imines and acid chlorides). In one pot reactions, phosphites and phosphonites as phosphorus(III) reagent provide the required nucleophilicity/electrophilicity balance to facilitate dipole generation and reactivity.[2]

Cycloaddition reactions of asymmetric 1,3-dipoles and dipolarophiles can lead to isomeric product mixtures, particularly with münchnones and alkynes in the synthesis of pyrroles.[7][8][9] In contrast to related Diels-Alder reactions, rationalization of regioisomeric bias using conventional frontier molecular orbital (FMO) theory fails. The complimentary use of montéalones and münchnones allows product mixtures to be avoided and highlights the need to include reactant geometrical changes in the rationalization process.[10]

See also

References

  1. ^ Reissig, H.-U.; Zimmer, R., Münchnones—New Facets after 50 Years. Angew. Chem. Int. Edit. 2014, 53, 9708. (doi:10.1002/anie.201405092)
  2. ^ a b St. Cyr, D. J.; Arndtsen, B. A., A New Use of Wittig-type Reagents as 1,3-Dipolar Cycloaddition Precursors and in Pyrrole Synthesis. J. Am. Chem. Soc. 2007, 129, 12366. (doi:10.1021/ja074330w)
  3. ^ Aly, S.; Romashko, M.; Arndtsen, B. A., Multicomponent Synthesis of Substituted and Fused-Ring Imidazoles via Phospha-münchnone Cycloaddition. J. Org. Chem. 2015, 80, 2709. (doi:10.1021/jo5028936)
  4. ^ Morin, M. S. T.; Arndtsen, B. A., Chiral Phosphorus-Based 1,3-Dipoles: A Modular Approach to Enantioselective 1,3-Dipolar Cycloaddition and Polycyclic 2-Pyrroline Synthesis. Org. Lett. 2014, 16, 1056. (doi:10.1021/ol4035512)
  5. ^ St-Cyr, D. J.; Morin, M. S. T.; Belanger-Gariepy, F.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N., Phospha-Münchnones: Electronic Structures and 1,3-Dipolar Cycloadditions. J. Org. Chem. 2010, 75, 4261. (doi:10.1021/jo1008383)
  6. ^ Krenske, E. H.; Houk, K. N.; Arndtsen, B. A.; St. Cyr, D. J., Cyclic 1,3-Dipoles or Acyclic Phosphonium Ylides? Electronic Characterization of "Montréalones". J. Am. Chem. Soc. 2008, 130, 10052. (doi:10.1021/ja802646f)
  7. ^ Lubell, W.; St-Cyr, D.; Dufour-Gallant, J.; Hopewell, R.; Boutard, N.; Kassem, T.; Dörr, A.; Zelli, R., "1H-Pyrroles (Update 2013)". Science of Synthesis 2013, 2013/1, 157-388.
  8. ^ Gribble, G. W. In Oxazoles: Synthesis, Reactions, and Spectroscopy, A; Palmer, D. C., Ed.; Wiley: New York, 2003; Vol. 60. (doi:10.1002/0471428035.ch4)
  9. ^ Gingrich, H. L.; Baum, J. S. In Oxazoles, Chemistry of Heterocyclic Compounds; Turchi, I. J., Ed.; Wiley: New York, 1986; Vol. 45. (doi:10.1002/9780470187289.ch4)
  10. ^ Morin, M. S. T.; St-Cyr, D. J.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N., Modular Mesoionics: Understanding and Controlling Regioselectivity in 1,3-Dipolar Cycloadditions of Münchnone Derivatives. J. Am. Chem. Soc. 2013, 135, 17349. (doi:10.1021/ja406833q)