Jump to content

Lise Meitner: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Undid revision 650966024 by 50.46.39.242 (talk): restored changed detail added by User:Bushmillsmccallan on 28-Apr-2014 23:22, rev. 606176488.
Narliu (talk | contribs)
Line 48: Line 48:
Following the doctoral degree, she rejected an offer to work in a gas lamp factory. Encouraged by her father and backed by his financial support, she went to Berlin. [[Max Planck]] allowed her to attend his lectures, an unusual gesture by Planck, who until then had rejected any women wanting to attend his lectures.{{fact|date=February 2015}} After one year, Meitner became Planck's assistant. During the first years she worked together with chemist [[Otto Hahn]] and discovered with him several new isotopes. In 1909 she presented two papers on [[Beta particle|beta-radiation]].
Following the doctoral degree, she rejected an offer to work in a gas lamp factory. Encouraged by her father and backed by his financial support, she went to Berlin. [[Max Planck]] allowed her to attend his lectures, an unusual gesture by Planck, who until then had rejected any women wanting to attend his lectures.{{fact|date=February 2015}} After one year, Meitner became Planck's assistant. During the first years she worked together with chemist [[Otto Hahn]] and discovered with him several new isotopes. In 1909 she presented two papers on [[Beta particle|beta-radiation]].


In 1912 the research group Hahn–Meitner moved to the newly founded Kaiser-Wilhelm-Institut (KWI) in Berlin-Dahlem, south west in Berlin. She worked without salary as a "guest" in Hahn's department of Radiochemistry. It was not until 1913, at 35 years old and following an offer to go to Prague as associate professor, that she got a permanent position at KWI.
In 1912 the research group Hahn–Meitner moved to the newly founded Kaiser-Wilhelm-Institute (KWI) in Berlin-Dahlem, south west in Berlin. She worked without salary as a "guest" in Hahn's department of Radiochemistry. It was not until 1913, at 35 years old and following an offer to go to Prague as associate professor, that she got a permanent position at KWI.


In the first part of [[World War I]], she served as a nurse handling X-ray equipment. She returned to Berlin and her research in 1916, but not without inner struggle. She felt in a way ashamed of wanting to continue her research efforts when thinking about the pain and suffering of the victims of war and their medical and emotional needs.<ref>Charlotte Kerner. Lise, Atomphysikerin. Die Lebensgeschichte der Lise Meitner. 2. Auflage. Weinheim: Verlag Beltz & Gelberg 2006 ISBN 978-3-407-78812-2</ref>
In the first part of [[World War I]], she served as a nurse handling X-ray equipment. She returned to Berlin and her research in 1916, but not without inner struggle. She felt in a way ashamed of wanting to continue her research efforts when thinking about the pain and suffering of the victims of war and their medical and emotional needs.<ref>Charlotte Kerner. Lise, Atomphysikerin. Die Lebensgeschichte der Lise Meitner. 2. Auflage. Weinheim: Verlag Beltz & Gelberg 2006 ISBN 978-3-407-78812-2</ref>

Revision as of 03:18, 25 March 2015

Lise Meitner
Lise Meitner in 1946
Born7 November 1878[1][2]
Died27 October 1968(1968-10-27) (aged 89)
Cambridge, England
CitizenshipAustria (pre-1949), Sweden (post-1949)
Alma materUniversity of Vienna
Known forNuclear fission
AwardsLieben Prize (1925)
Max Planck Medal (1949)
Otto Hahn Prize for Chemistry and Physics (1955)
Enrico Fermi Award (1966)
Scientific career
FieldsPhysics
InstitutionsKaiser Wilhelm Institute
University of Berlin
Doctoral advisorFranz S. Exner
Other academic advisorsLudwig Boltzmann
Max Planck
Doctoral studentsArnold Flammersfeld
Kan-Chang Wang
Nikolaus Riehl
Other notable studentsMax Delbrück
Hans Hellmann
Signature
Notes
She was the aunt of Otto Robert Frisch. Her father was Philipp Meitner.

Lise Meitner (7 November 1878 – 27 October 1968) was an Austrian physicist who worked on radioactivity and nuclear physics.[3] Meitner was part of the team that discovered nuclear fission, an achievement for which her colleague Otto Hahn was awarded the Nobel Prize.[4] Meitner is often mentioned as one of the most glaring examples of women's scientific achievement overlooked by the Nobel committee.[5][6][7] A 1997 Physics Today study concluded that Meitner's omission was "a rare instance in which personal negative opinions apparently led to the exclusion of a deserving scientist" from the Nobel.[8] Element 109, meitnerium, is named in her honour.[9][10][11]

Early years

Meitner in 1906

Meitner was born into a Jewish family as the third of eight children in Vienna, 2nd district (Leopoldstadt). Her father, Philipp Meitner,[12] was one of the first Jewish lawyers in Austria.[7] She was born on 7 November 1878. She shortened her name from Elise to Lise.[13] The birth register of Vienna's Jewish community lists Meitner as being born on 17 November 1878, but all other documents list it as 7 November, which is what she used.[1] As an adult, she converted to Christianity, following Lutheranism,[1][14] and was baptized in 1908.[15]

Education

Meitner studied physics and became the second woman to obtain a doctoral degree in physics at the University of Vienna in 1905 (her dissertation was on "heat conduction in an inhomogeneous body").[7] Women were not allowed to attend public institutions of higher education in those days, but Meitner was able to achieve a private education in physics in part because of her supportive parents, and she completed in 1901 with an "externe Matura" examination at the Akademisches Gymnasium.[16][17]

In 1926, Meitner became the first woman in Germany to assume a post of full professor in physics, at the University of Berlin. There she undertook the research program in nuclear physics which eventually led to her co-discovery of nuclear fission in 1939, after she had left Berlin. She was praised by Albert Einstein as the "German Marie Curie".[7][18][19]

In 1930, Meitner taught a seminar on nuclear physics and chemistry with Leó Szilárd. With the discovery of the neutron in the early 1930s, speculation arose in the scientific community that it might be possible to create elements heavier than uranium (atomic number 92) in the laboratory. A scientific race began between Ernest Rutherford in Britain, Irène Joliot-Curie in France, Enrico Fermi in Italy, and the Meitner–Hahn team in Berlin. At the time, all concerned believed that this was abstract research for the probable honour of a Nobel prize. None suspected that this research would culminate in nuclear weapons.

When Adolf Hitler came to power in 1933, Meitner was acting director of the Institute for Chemistry. Although she was protected by her Austrian citizenship, all other Jewish scientists, including her nephew Otto Frisch, Fritz Haber, Leó Szilárd and many other eminent figures, were dismissed or forced to resign from their posts. Most of them emigrated from Germany. Her response was to say nothing and bury herself in her work. In 1938, Meitner fled to the Netherlands and finally arrived in Sweden. She later acknowledged, in 1946, that "It was not only stupid but also very wrong that I did not leave at once."[20]

Scientific career

Following the doctoral degree, she rejected an offer to work in a gas lamp factory. Encouraged by her father and backed by his financial support, she went to Berlin. Max Planck allowed her to attend his lectures, an unusual gesture by Planck, who until then had rejected any women wanting to attend his lectures.[citation needed] After one year, Meitner became Planck's assistant. During the first years she worked together with chemist Otto Hahn and discovered with him several new isotopes. In 1909 she presented two papers on beta-radiation.

In 1912 the research group Hahn–Meitner moved to the newly founded Kaiser-Wilhelm-Institute (KWI) in Berlin-Dahlem, south west in Berlin. She worked without salary as a "guest" in Hahn's department of Radiochemistry. It was not until 1913, at 35 years old and following an offer to go to Prague as associate professor, that she got a permanent position at KWI.

In the first part of World War I, she served as a nurse handling X-ray equipment. She returned to Berlin and her research in 1916, but not without inner struggle. She felt in a way ashamed of wanting to continue her research efforts when thinking about the pain and suffering of the victims of war and their medical and emotional needs.[21]

Lise Meitner and Otto Hahn in their laboratory.

In 1917, she and Hahn discovered the first long-lived isotope of the element protactinium, for which she was awarded the Leibniz Medal by the Berlin Academy of Sciences. That year, Meitner was given her own physics section at the Kaiser Wilhelm Institute for Chemistry.[7]

In 1922, she discovered the cause, known as the Auger effect, of the emission from surfaces of electrons with 'signature' energies.[22] The effect is named for Pierre Victor Auger, a French scientist who independently discovered the effect in 1923.[23]

After the Anschluss, her situation became desperate. On July 13, 1938, Meitner, with the support of Otto Hahn and the help from the Dutch physicists Dirk Coster and Adriaan Fokker, escaped to the Netherlands. She was forced to travel under cover to the Dutch border, where Coster persuaded German immigration officers that she had permission to travel to the Netherlands. She reached safety, though without her possessions. Meitner later said that she left Germany forever with 10 marks in her purse. Before she left, Otto Hahn had given her a diamond ring he had inherited from his mother: this was to be used to bribe the frontier guards if required. It was not required, and Meitner's nephew's wife later wore it.

Meitner was lucky to escape, as Kurt Hess, a chemist who was the head of the organic department of the KWI and an avid Nazi, had informed the authorities that she was about to flee. An appointment at the University of Groningen did not come through, and she went instead to Stockholm, where she took up a post at Manne Siegbahn's laboratory, despite the difficulty caused by Siegbahn's prejudice against women in science. Here she established a working relationship with Niels Bohr, who travelled regularly between Copenhagen and Stockholm. She continued to correspond with Hahn and other German scientists.[24]

Nuclear fission

On occasion of a lecture by Hahn in Bohr's Institute he, Meitner and Frisch met in Copenhagen on November 10. Later they exchanged a series of letters. In December Hahn and Fritz Strassmann performed the difficult experiments which isolated the evidence for nuclear fission at their laboratory in Berlin. The surviving correspondence shows that Hahn recognized that fission was the only explanation for the barium (at first he named the process a 'bursting' of the uranium), but, baffled by this remarkable conclusion, he wrote to Meitner. The possibility that uranium nuclei might break up under neutron bombardment had been suggested years before, notably by Ida Noddack in 1934. However, by employing the existing "liquid-drop" model of the nucleus,[25] Meitner and Frisch were the first to articulate a theory of how the nucleus of an atom could be split into smaller parts: uranium nuclei had split to form barium and krypton, accompanied by the ejection of several neutrons and a large amount of energy (the latter two products accounting for the loss in mass). She and Frisch had discovered the reason that no stable elements beyond uranium (in atomic number) existed naturally; the electrical repulsion of so many protons overcame the strong nuclear force.[25] Frisch and Meitner also first realized that Einstein's famous equation, E = mc2, explained the source of the tremendous releases of energy in nuclear fission, by the conversion of rest mass into kinetic energy, popularly described as the conversion of mass into energy.

Nuclear fission experimental setup, reconstructed at the Deutsches Museum, Munich.

A letter from Bohr, commenting on the fact that the amount of energy released when he bombarded uranium atoms was far larger than had been predicted by calculations based on a non-fissile core, had sparked the above inspiration in December 1938. But Meitner and Frisch later confirmed that chemistry had been solely responsible for the discovery, although Hahn, as a chemist, was reluctant to explain the fission process in correct physical terms.

In a later appreciation Lise Meitner wrote:[26]

The discovery of nuclear fission by Otto Hahn and Fritz Strassmann opened up a new era in human history. It seems to me that what makes the science behind this discovery so remarkable is that it was achieved by purely chemical means.

And in an interview with the West German television (ARD, March 8, 1959) Meitner said:[27]

Otto Hahn and Fritz Strassmann were able to do this by exceptionally good chemistry, fantastically good chemistry, which was way ahead of what any one else was capable of at that time. The Americans learned to do it later. But at that time, Hahn and Strassmann were really the only ones who could do it. And that was because they were such good chemists. Somehow they really succeeded in using chemistry to demonstrate and prove a physical process.

Fritz Strassmann responded in the same interview with this clarification:[27]

Professor Meitner stated that the success could be attributed to chemistry. I have to make a slight correction. Chemistry merely isolated the individual substances, it did not precisely identify them. It took Professor Hahn's method to do this. This is where his achievement lies.

Hahn and Strassmann had sent the manuscript of their first paper to Naturwissenschaften in December 1938, reporting they had detected and identified the element barium after bombarding uranium with neutrons;[28] simultaneously, Hahn had communicated their results exclusively to Meitner in several letters, and did not inform the physicists in his own institute.

In their second publication on the evidence of barium (Die Naturwissenschaften, 10 February 1939) Hahn and Strassmann used for the first time the name Uranspaltung (Uranium fission) and predicted the existence and liberation of additional neutrons during the fission process (which was proved later to be a chain reaction by Frédéric Joliot and his team). Lise Meitner and her nephew Otto Frisch were the first who correctly interpreted Hahn's and Strassmann's results as being nuclear fission, a term coined by Frisch, and published their paper in Nature.[29] Frisch confirmed this experimentally on 13 January 1939.[30]

These two reports, the first Hahn-Strassmann publication of January 6, 1939, and the Frisch-Meitner publication of February 11, 1939, had electrifying effects on the scientific community. Because there was a possibility that fission could be used as a weapon, and since the knowledge was in German hands, Leó Szilárd, Edward Teller, and Eugene Wigner jumped into action, persuading Albert Einstein, a celebrity, to write President Franklin D. Roosevelt a letter of caution. In 1940 Frisch and Rudolf Peierls produced the Frisch–Peierls memorandum, which first set out how an atomic explosion could be generated, and this ultimately led to the establishment in 1942 of the Manhattan Project. Meitner refused an offer to work on the project at Los Alamos, declaring "I will have nothing to do with a bomb!"[31] Meitner said that Hiroshima had come as a surprise to her, and that she was "sorry that the bomb had to be invented."[32]

In Sweden, Meitner was first active at Siegbahn's Nobel Institute for Physics, and at the Swedish Defence Research Establishment (FOA) and the Royal Institute of Technology in Stockholm, where she had a laboratory and participated in research on R1, Sweden's first nuclear reactor. In 1947, a personal position was created for Meitner at the University College of Stockholm with the salary of a professor and funding from the Council for Atomic Research.[33]

Awards and honours

Meitner with actress Katharine Cornell and physicist Arthur Compton on 6 June 1946, when Meitner and Cornell were receiving awards from the National Conference of Christians and Jews.

On 15 November 1945 the Royal Swedish Academy of Sciences announced that Hahn had been awarded the 1944 Nobel Prize in Chemistry for the discovery of nuclear fission.[34] "Surely Hahn fully deserved the Nobel Prize for chemistry. There is really no doubt about it. But I believe that Otto Robert Frisch and I contributed something not insignificant to the clarification of the process of uranium fission - how it originates and that it produces so much energy and that was something very remote to Hahn." wrote Lise Meitner to her friend Eva von Bahr-Bergius in November 1945.[35] And Carl Friedrich von Weizsäcker, Lise Meitner's former assistant, later added: "He certainly did deserve this Nobel Prize. He would have deserved it even if he had not made this discovery. But everyone recognized that the splitting of the atomic nucleus merited a Nobel Prize."[35]

Some historians who have documented their view of the discovery of nuclear fission believe Meitner should have been awarded the Nobel Prize with Hahn.[36][37][38]

On a visit to the USA in 1946, she received the honour of "Woman of the Year" by the National Press Club and had dinner with President Harry Truman and others at the Women's National Press Club. She lectured at Princeton, Harvard and other US universities, and was awarded a number of honorary doctorates. Meitner refused to move back to Germany, and enjoyed retirement and research in Stockholm until her relocation to Cambridge, England in 1960. She received the Max Planck Medal of the German Physics Society in 1949, and in 1955 she was awarded the first Otto Hahn Prize of the German Chemical Society. In 1957 the German President Theodor Heuss awarded her the highest German order for scientists, the peace class of the Pour le mérite. For both honours she was proposed by Otto Hahn. Meitner was nominated to receive the Nobel Prize three times. An even rarer honour was given to her in 1997 when element 109 was named meitnerium in her honour.[7][39][40] Named after Meitner were the Hahn–Meitner-Institut in Berlin, craters on the Moon and on Venus, and a main-belt asteroid.

Meitner was elected a foreign member of the Royal Swedish Academy of Sciences in 1945, and had her status changed to that of a Swedish member in 1951. Four years later she became a foreign member of the Royal Society (ForMemRS) in London.[16] She was elected a Foreign Honorary Member of the American Academy of Arts and Sciences in 1960.[41]

In 1966 Hahn, Fritz Strassmann and Meitner were jointly awarded the Enrico Fermi Award.

Meitner received 21 scientific honours and awards for her work (including 5 honorary doctorates and membership of many academies). In 1947 she received the Award of the City of Vienna for science. She was the first female member of the scientific class of the Austrian Academy of Sciences. In 2008, the NBC defence school of the Austrian Armed Forces established the "Lise Meitner" award.

In 1960, Meitner was awarded the Wilhelm Exner Medal and in 1967, the Austrian Decoration for Science and Art.

In July 2014 a statue of Lise Meitner was unveiled in the garden of the Humboldt University of Berlin next to similar statues of Hermann von Helmholtz and Max Planck.[42]

Schools and streets were named after her in many cities in Austria and Germany.

The European Physical Society awards the Lise Meitner Prize for excellent research in nuclear science.[43] In Sweden the Gothenburg Lise Meitner Award is awarded annually by the Gothenburg Physics Center to a scientist who has made a breakthrough in physics.[44]

Later years

After the war, Meitner, while acknowledging her own moral failing in staying in Germany from 1933 to 1938, was bitterly critical of Hahn and other German scientists who had collaborated with the Nazis and done nothing to protest against the crimes of Hitler's regime. Referring to the leading German scientist Werner Heisenberg, she said: "Heisenberg and many millions with him should be forced to see these camps and the martyred people." She wrote to Hahn:

Meitner's grave in Bramley

You all worked for Nazi Germany. And you tried to offer only a passive resistance. Certainly, to buy off your conscience you helped here and there a persecuted person, but millions of innocent human beings were allowed to be murdered without any kind of protest being uttered ... [it is said that] first you betrayed your friends, then your children in that you let them stake their lives on a criminal war – and finally that you betrayed Germany itself, because when the war was already quite hopeless, you did not once arm yourselves against the senseless destruction of Germany.

— [45]

Hahn wrote in his memoirs that he and Lise Meitner had been lifelong friends.[46]

Meitner became a Swedish citizen in 1949. She retired in 1960 and moved to the UK where most of her relatives were, although she continued working part-time and giving lectures. A strenuous trip to the United States in 1964 led to Meitner having a heart attack, from which she spent several months recovering. Her physical and mental condition weakened by atherosclerosis, she was unable to travel to the US to receive the Enrico Fermi prize and relatives had to present it to her. After breaking her hip in a fall and suffering several small strokes in 1967, Meitner made a partial recovery, but eventually was weakened to the point where she moved into a Cambridge nursing home. She died on 27 October 1968 at the age of 89. Meitner was not informed of the deaths of Otto Hahn (d. July 1968) and his wife Edith, as her family believed it would be too much for someone so frail.[3] As was her wish, she was buried in the village of Bramley in Hampshire, at St. James parish church, close to her younger brother Walter, who had died in 1964. Her nephew Otto Frisch composed the inscription on her headstone. It reads "Lise Meitner: a physicist who never lost her humanity". A short residential street in the village is named "Meitner Close".

See also

References

  1. ^ a b c Sime, Ruth Lewin (1996) Lise Meitner: A Life in Physics (Series: California studies in the history of science volume 13) University of California Press, Berkeley, California, page 1, ISBN 0-520-08906-5
  2. ^ "Lise Meitner | Biography". atomicarchive.com. 27 October 1968. Retrieved 9 April 2012.
  3. ^ a b "Lise Meitner Dies; Atomic Pioneer, 89. Lise Meitner, Physicist, Is Dead. Paved Way for Splitting of Atom". The New York Times. 28 October 1968. Retrieved 18 April 2008. Dr. Lise Meitner, the Austrian born nuclear physicist who first calculated the enormous energy released by splitting the uranium atom, died today in a Cambridge nursing home. She was 89 years old.
  4. ^ Erica Westly (6 October 2008). "No Nobel for You: Top 10 Nobel Snubs". Scientific American.
  5. ^ Horace Freeland Judson (20 October 2003). "No Nobel Prize for Whining". The New York Times. Retrieved 3 August 2007. Lise Meitner, the physicist first to recognize that experiments reported by two former colleagues in Berlin meant that atoms had been split, never got a prize, even though one of those colleagues, Otto Hahn, did in 1944.
  6. ^ "Otto Hahn, Lise Meitner and Fritz Strassmann". Chemistry Heritage. Retrieved 3 August 2007. {{cite web}}: Italic or bold markup not allowed in: |publisher= (help)
  7. ^ a b c d e f "The Woman Behind the Bomb". The Washington Post. Retrieved 3 August 2007.
  8. ^ "Revelations Concerning Lisa Meitner And The Nobel Prize". Science Week. Retrieved 5 March 2015. {{cite news}}: Italic or bold markup not allowed in: |publisher= (help)
  9. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 11206992, please use {{cite journal}} with |pmid=11206992 instead.
  10. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 7014939, please use {{cite journal}} with |pmid=7014939 instead.
  11. ^ Attention: This template ({{cite pmid}}) is deprecated. To cite the publication identified by PMID 4573793, please use {{cite journal}} with |pmid=4573793 instead.
  12. ^ "Associated Papers of Lise Meitner". Janus. Retrieved 8 January 2008. {{cite web}}: Italic or bold markup not allowed in: |publisher= (help)
  13. ^ Cornwell, John. Hitler's Scientists: science, war and the devil's pact (Viking 2003, ISBN 0-670-03075-9), 66.
  14. ^ "Lise Meitner and Nuclear Fission". Orlandoleibovitz.com. Retrieved 9 April 2012.
  15. ^ Roqué, Xavier "Meitner, Lise (1878–1968), physicist" Oxford Dictionary of National Biography Oxford University Press, Oxford, England. Retrieved 27 October 2009
  16. ^ a b Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1098/rsbm.1970.0016, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1098/rsbm.1970.0016 instead.
  17. ^ Meitner was said to be inspired by her teacher, physicist Ludwig Boltzmann, and was said to often speak with contagious enthusiasm of his lectures.
  18. ^ Lisa Yount A to Z of women in science and math, Infobase Publishing, 2008, ISBN 0-8160-6695-7, p. 204
  19. ^ Michael F. L'Annunziata Radioactivity: introduction and history, Elsevier, 2007, ISBN 0-444-52715-X, p. 229
  20. ^ Cornwell, Hitler's Scientists, 207–13
  21. ^ Charlotte Kerner. Lise, Atomphysikerin. Die Lebensgeschichte der Lise Meitner. 2. Auflage. Weinheim: Verlag Beltz & Gelberg 2006 ISBN 978-3-407-78812-2
  22. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/BF01326962, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/BF01326962 instead.
  23. ^ P. Auger: Sur les rayons β secondaires produits dans un gaz par des rayons X, C.R.A.S. 177 (1923) 169–171.
  24. ^ Cornwell, Hitler's Scientists, 214–15
  25. ^ a b Richard Rhodes, The Making of the Atomic Bomb (1986), Simon & Schuster, New York, NY pp. 257–60
  26. ^ Lise Meitner: Recollections of Otto Hahn. S. Hirzel, Stuttgart, 2005
  27. ^ a b Lise Meitner: Recollections of Otto Hahn. S. Hirzel, Stuttgart, 2005.
  28. ^ O. Hahn and F. Strassmann Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle (On the detection and characteristics of the alkaline earth metals formed by irradiation of uranium with neutrons), Naturwissenschaften Volume 27, Number 1, 11–15 (1939). The authors were identified as being at the Kaiser-Wilhelm-Institut für Chemie, Berlin-Dahlem. Received 22 December 1938.
  29. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1038/143239a0, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1038/143239a0 instead.. Meitner is identified as being at the Physical Institute, Academy of Sciences, Stockholm. Frisch is identified as being at the Institute of Theoretical Physics, University of Copenhagen.
  30. ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1038/143276a0, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1038/143276a0 instead. [The experiment for this letter to the editor was conducted on 13 January 1939; see Richard Rhodes The Making of the Atomic Bomb 263 and 268 (Simon and Schuster, 1986).]
  31. ^ Ruth Lewin Sime, Lise Meitner: A Life in Physics (University of California Press, 1996), 305
  32. ^ The Catcher was a Spy,Nicholas Dawidoff, New York 1994 p.228
  33. ^ Entry for Lise Meitner in Svensk Uppslagsbok, volume 19 (1951), column 756. Template:Sv icon
  34. ^ "The Nobel Prize in Chemistry 1944". Nobel Foundation. Retrieved 26 August 2011.
  35. ^ a b Lise Meitner: Recollections of Otto Hahn. S. Hirzel Verlag, Stuttgart 2005.
  36. ^ Ruth Lewin Sime From Exceptional Prominence to Prominent Exception: Lise Meitner at the Kaiser Wilhelm Institute for Chemistry Ergebnisse 24 Forschungsprogramm Geschichte der Kaiser-Wilhelm-Gesellschaft im Nationalsozialismus (2005).
  37. ^ Ruth Lewin Sime Lise Meitner: A Life in Physics (University of California, 1997).
  38. ^ Elisabeth Crawford, Ruth Lewin Sime, and Mark Walker A Nobel Tale of Postwar Injustice, Physics Today Volume 50, Issue 9, 26–32 (1997).
  39. ^ Hahn, Otto (13 December 1946). "From the natural transmutations of uranium to its artificial fission. Nobel Lecture" (PDF). Nobel Foundation. Retrieved 24 September 2007.
  40. ^ Hardy, Anne (4 March 2004). "Otto Hahn – Entdecker der Kernspaltung" (in German). Pry Physik, Wiley Interscience GmbH. Retrieved 24 September 2007.
  41. ^ "Book of Members, 1780–2010: Chapter M" (PDF). American Academy of Arts and Sciences. Retrieved 29 July 2014.
  42. ^ "Große Physikerin, späte Ehrung" by Astrid Herbold, Der Tagesspiegel, 9 July 2014 Template:De icon
  43. ^ "Lise Meitner Prize". EPS. Retrieved 11 September 2014.
  44. ^ "Gothenburg Lise Meitner Award". Chalmers. Retrieved 12 September 2014.
  45. ^ Cornwell, Hitler's Scientists, 411
  46. ^ Otto Hahn: My Life.Preface by Sir James Chadwick. Macdonald & Co., London, 1970. American edition: Herder and Herder, New York 1970.

Further reading

  • Frisch, Otto Robert, ed. (1959). Trends in Atomic Physics: Essays Dedicated to Lise Meitner, Otto Hahn, Max von Laue on the Occasion of their 80th Birthday. New York: Interscience.
  • Hahn, Otto (1966). A Scientific Autobiography. Preface by Glenn T. Seaborg. Charles Scribner's sons, New York, 1966. English edition (1967): McGibbon & Kee, London.
  • Hahn, Otto (1970). My Life. Preface by Sir James Chadwick. Macdonald, London. American edition (1970): Herder and Herder, New York.
  • Hahn, Dietrich, ed. (2005). Lise Meitner: Erinnerungen an Otto Hahn. Stuttgart: S. Hirzel. ISBN 978-3-7776-1380-2.
  • Rife, Patricia (1999). Lise Meitner and the Dawn of the Nuclear Age. Birkhäuser.
  • Sime, Ruth Lewin (2006). "Lise Meitner". In Byers, Nina; Williams, Gary (eds.). Out of the Shadows: Contributions of 20th-Century Women to Physics. Cambridge University Press.
  • Sime, Ruth Lewin (1996). Lise Meitner: A Life in Physics. Berkeley: University of California Press. ISBN 0-520-08906-5.
  • Sime, Ruth Lewin From Exceptional Prominence to Prominent Exception: Lise Meitner at the Kaiser Wilhelm Institute for Chemistry Ergebnisse 24 Forschungsprogramm Geschichte der Kaiser-Wilhelm-Gesellschaft im Nationalsozialismus (2005).
  • Weston, Tom (2011). Fission. Boston: tom weston media. ISBN 978-0-9819413-5-6.
  • Yount, Lisa (1996). Twentieth Century Women Scientists. New York: Facts on File. ISBN 0-8160-3173-8.

Template:Persondata