Jump to content

Kravchuk polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tag: section blanking
Reverted 2 edits by 94.128.99.22 (talk): Unexplained content removal. (TW)
Line 12: Line 12:


:<math>\mathcal{K}_k(x; n) = \mathcal{K}_k(x) = \sum_{j=0}^{k}(-1)^j (q-1)^{k-j} \binom {x}{j} \binom{n-x}{k-j}, \quad k=0,1, \ldots, n.</math>
:<math>\mathcal{K}_k(x; n) = \mathcal{K}_k(x) = \sum_{j=0}^{k}(-1)^j (q-1)^{k-j} \binom {x}{j} \binom{n-x}{k-j}, \quad k=0,1, \ldots, n.</math>

==Properties==
The Kravchuk polynomial has following alternative expressions:

:<math>\mathcal{K}_k(x; n) = \sum_{j=0}^{k}(-q)^j (q-1)^{k-j} \binom {n-j}{k-j} \binom{x}{j}. </math>
:<math>\mathcal{K}_k(x; n) = \sum_{j=0}^{k}(-1)^j q^{k-j} \binom {n-k+j}{j} \binom{n-x}{k-j}. </math>

===Orthogonality relations===
For nonnegative integers ''r'', ''s'',

:<math>\sum_{i=0}^n\binom{n}{i}(q-1)^i\mathcal{K}_r(i; n)\mathcal{K}_s(i; n) = q^n(q-1)^r\binom{n}{r}\delta_{r,s}. </math>


==See also==
==See also==

Revision as of 03:16, 31 May 2015

Kravchuk polynomials or Krawtchouk polynomials (also written using several other transliterations of the Ukrainian name "Кравчу́к") are discrete orthogonal polynomials associated with the binomial distribution, introduced by Mikhail Kravchuk (1929). The first few polynomials are (for q=2):

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

Definition

For any prime power q and positive integer n, define the Kravchuk polynomial

Properties

The Kravchuk polynomial has following alternative expressions:

Orthogonality relations

For nonnegative integers r, s,

See also

References

  • Kravchuk, M. (1929), "Sur une généralisation des polynomes d'Hermite.", Comptes Rendus Mathematique (in French), 189: 620–622, JFM 55.0799.01 {{citation}}: Cite has empty unknown parameter: |1= (help)
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B. (1991), Classical Orthogonal Polynomials of a Discrete Variable, Springer Series in Computational Physics, Berlin: Springer-Verlag, ISBN 3-540-51123-7, MR 1149380.
  • Levenshtein, Vladimir I. (1995), "Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces", IEEE Transactions on Information Theory, 41 (5): 1303–1321, doi:10.1109/18.412678, MR 1366326.
  • F. J. MacWilliams (1977), The Theory of Error-Correcting Codes, North-Holland, ISBN 0-444-85193-3 {{citation}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)