Scala (programming language): Difference between revisions
m Reverted edits by LimitationsAndRestrictions495656778774 (talk) to last version by 218.212.201.235 |
ReySquared (talk | contribs) m Not sure why there was a cn here, the citation was clearly visible right next to it |
||
Line 18: | Line 18: | ||
| file_ext = .scala |
| file_ext = .scala |
||
}} |
}} |
||
'''Scala''' ( |
'''Scala''' ({{IPAc-en|ˈ|s|k|ɑː|l|ɑː}} {{respell|SKAH|lah}})<ref>{{cite book |last=Odersky |first=Martin |date=2008 |title=Programming in Scala |url=http://books.google.com/books?id=MFjNhTjeQKkC&lpg=PA1&ots=FMlgYEHRsq&dq=scala%20is%20pronounced%20skah-lah&pg=PA3#v=onepage&q=scala%20is%20pronounced%20skah-lah&f=false |location=Mountain View, California |publisher=Artima |page=3 |isbn=9780981531601 |accessdate=12 June 2014 }}</ref> is a [[Programming language|programming]] language for general [[software application]]s. Scala has full support for [[functional programming]] and a very strong [[Static typing|static]] [[type system]]. This allows programs written in Scala to be very concise and thus smaller in size than other [[general-purpose programming language]]s. Many of Scala's design decisions were inspired by [[Criticism of Java|criticism of the shortcomings of Java]].<ref name="overview"/> |
||
Scala source code is intended to be compiled to [[Java bytecode]], so that the resulting executable code runs on a [[Java virtual machine]]. Java libraries may be used directly in Scala code and vice versa ([[language interoperability]]).<ref>{{cite web |url=http://www.scala-lang.org/old/faq/4 |title=Frequently Asked Questions - Java Interoperability |author=<!--Staff writer(s); no by-line.--> |website=scala-lang.org |accessdate=2015-02-06}}</ref> Like Java, Scala is [[object-oriented programming|object-oriented]], and uses a curly-brace syntax reminiscent of the [[C (programming language)|C programming language]]. Unlike Java, Scala has many features of [[functional programming]] languages like [[Scheme (programming language)|Scheme]], [[Standard ML]] and [[Haskell (programming language)|Haskell]], including [[currying]], [[type inference]], [[immutability]], [[lazy evaluation]], and [[pattern matching]]. It also has an advanced type system supporting [[algebraic data type]]s, [[covariance and contravariance (computer science)|covariance and contravariance]], [[higher-order type operator|higher-order types]] (but not [[Parametric polymorphism|higher-rank types]]), and [[anonymous type]]s. Other features of Scala not present in Java include [[operator overloading]], optional parameters, [[named parameter]]s, [[raw string]]s, and no [[checked exception]]s. |
Scala source code is intended to be compiled to [[Java bytecode]], so that the resulting executable code runs on a [[Java virtual machine]]. Java libraries may be used directly in Scala code and vice versa ([[language interoperability]]).<ref>{{cite web |url=http://www.scala-lang.org/old/faq/4 |title=Frequently Asked Questions - Java Interoperability |author=<!--Staff writer(s); no by-line.--> |website=scala-lang.org |accessdate=2015-02-06}}</ref> Like Java, Scala is [[object-oriented programming|object-oriented]], and uses a curly-brace syntax reminiscent of the [[C (programming language)|C programming language]]. Unlike Java, Scala has many features of [[functional programming]] languages like [[Scheme (programming language)|Scheme]], [[Standard ML]] and [[Haskell (programming language)|Haskell]], including [[currying]], [[type inference]], [[immutability]], [[lazy evaluation]], and [[pattern matching]]. It also has an advanced type system supporting [[algebraic data type]]s, [[covariance and contravariance (computer science)|covariance and contravariance]], [[higher-order type operator|higher-order types]] (but not [[Parametric polymorphism|higher-rank types]]), and [[anonymous type]]s. Other features of Scala not present in Java include [[operator overloading]], optional parameters, [[named parameter]]s, [[raw string]]s, and no [[checked exception]]s. |
Revision as of 16:55, 24 August 2015
Paradigm | Multi-paradigm: functional, object-oriented, imperative, concurrent |
---|---|
Designed by | Martin Odersky |
Developer | Programming Methods Laboratory of École Polytechnique Fédérale de Lausanne |
First appeared | 2003 |
Stable release | 2.11.7
/ June 23, 2015[1] |
Typing discipline | static, strong, inferred, structural |
Implementation language | Scala |
Platform | JVM, LLVM, Javascript[2] |
License | 3-clause BSD license[3] |
Filename extensions | .scala |
Website | www |
Influenced by | |
Eiffel, Erlang, Haskell,[4] Java, Lisp,[5] Pizza,[6] Standard ML, OCaml, Scheme, Smalltalk, Oz | |
Influenced | |
Fantom, Ceylon, Lasso, Kotlin, Swift[citation needed] | |
|
Scala (/ˈskɑːlɑː/ SKAH-lah)[7] is a programming language for general software applications. Scala has full support for functional programming and a very strong static type system. This allows programs written in Scala to be very concise and thus smaller in size than other general-purpose programming languages. Many of Scala's design decisions were inspired by criticism of the shortcomings of Java.[6]
Scala source code is intended to be compiled to Java bytecode, so that the resulting executable code runs on a Java virtual machine. Java libraries may be used directly in Scala code and vice versa (language interoperability).[8] Like Java, Scala is object-oriented, and uses a curly-brace syntax reminiscent of the C programming language. Unlike Java, Scala has many features of functional programming languages like Scheme, Standard ML and Haskell, including currying, type inference, immutability, lazy evaluation, and pattern matching. It also has an advanced type system supporting algebraic data types, covariance and contravariance, higher-order types (but not higher-rank types), and anonymous types. Other features of Scala not present in Java include operator overloading, optional parameters, named parameters, raw strings, and no checked exceptions.
The name Scala is a portmanteau of "scalable" and "language", signifying that it is designed to grow with the demands of its users.[9]
History
The design of Scala started in 2001 at the École Polytechnique Fédérale de Lausanne (EPFL) by Martin Odersky, following on from work on Funnel, a programming language combining ideas from functional programming and Petri nets.[10] Odersky had previously worked on Generic Java and javac, Sun's Java compiler.[10]
After an internal release in late 2003, Scala was released publicly in early 2004 on the Java platform,[11] and on the .NET platform in June 2004.[6][10][12] A second version (v2.0) followed in March 2006.[6] The .NET support was officially dropped in 2012.[13]
Although Scala had extensive support for functional programming from the beginning, Java remained a purely object oriented language until the introduction of lambda expressions with Java 8 in 2014.
On 17 January 2011 the Scala team won a five-year research grant of over €2.3 million from the European Research Council.[14] On 12 May 2011, Odersky and collaborators launched Typesafe Inc., a company to provide commercial support, training, and services for Scala. Typesafe received a $3 million investment in 2011 from Greylock Partners.[15][16][17][18]
Platforms and license
Scala runs on the Java platform (Java Virtual Machine) and is compatible with existing Java programs.[11] As the Android platform prefers to run applications in a JVM, Scala is well suited to Android development.[19]
The Scala software distribution, including compiler and libraries, is released under a BSD license.[20]
Examples
"Hello World" example
The Hello World program written in Scala has this form:
object HelloWorld extends App {
println("Hello, World!")
}
Unlike the stand-alone Hello World application for Java, there is no class declaration and nothing is declared to be static; a singleton object created with the object keyword is used instead.
With the program saved in a file named HelloWorld.scala
, it can be compiled from the command line:
$ scalac HelloWorld.scala
To run it:
$ scala HelloWorld
(You may need to use the "-cp" key to set the classpath like in Java).
This is analogous to the process for compiling and running Java code. Indeed, Scala's compilation and execution model is identical to that of Java, making it compatible with Java build tools such as Ant.
A shorter version of the "Hello World" Scala program is:
println("Hello, World!")
Scala includes interactive shell and scripting support.[21] Saved in a file named HelloWorld2.scala
, this can be run as a script without prior compilation using:
$ scala HelloWorld2.scala
Commands can also be entered directly into the Scala interpreter, using the option -e:
$ scala -e 'println("Hello, World!")'
Finally, commands can be entered interactively in the REPL:
$ scala Welcome to Scala version 2.10.3 (OpenJDK 64-Bit Server VM, Java 1.7.0_51). Type in expressions to have them evaluated. Type :help for more information. scala> println("Hello, World!") Hello, World! scala>
Basic example
The following example shows the differences between Java and Scala syntax:
// Java:
int mathFunction(int num) {
int numSquare = num*num;
return (int) (Math.cbrt(numSquare) +
Math.log(numSquare));
}
| |
// Scala: Direct conversion from Java
// no import needed; scala.math
// already imported as `math`
def mathFunction(num: Int): Int = {
var numSquare: Int = num*num
return (math.cbrt(numSquare) + math.log(numSquare)).
asInstanceOf[Int]
}
|
// Scala: More idiomatic
// Uses type inference, omits `return` statement,
// uses `toInt` method, declares numSquare immutable
import math._
def intRoot23(num: Int) = {
val numSquare = num*num
(cbrt(numSquare) + log(numSquare)).toInt
}
|
Some syntactic differences in this code are:
- Scala does not require semicolons to end statements.
- Value types are capitalized:
Int, Double, Boolean
instead ofint, double, boolean
. - Parameter and return types follow, as in Pascal, rather than precede as in C.
- Methods must be preceded by
def
. - Local or class variables must be preceded by
val
(indicates an immutable variable) orvar
(indicates a mutable variable). - The
return
operator is unnecessary in a function (although allowed); the value of the last executed statement or expression is normally the function's value. - Instead of the Java cast operator
(Type) foo
, Scala usesfoo.asInstanceOf[Type]
, or a specialized function such astoDouble
ortoInt
. - Instead of Java's
import foo.*;
, Scala usesimport foo._
. - Function or method
foo()
can also be called as justfoo
; methodthread.send(signo)
can also be called as justthread send signo
; and methodfoo.toString()
can also be called as justfoo toString
.
These syntactic relaxations are designed to allow support for domain-specific languages.
Some other basic syntactic differences:
- Array references are written like function calls, e.g.
array(i)
rather thanarray[i]
. (Internally in Scala, both arrays and functions are conceptualized as kinds of mathematical mappings from one object to another.) - Generic types are written as e.g.
List[String]
rather than Java'sList<String>
. - Instead of the pseudo-type
void
, Scala has the actual singleton classUnit
(see below).
Example with classes
The following example contrasts the definition of classes in Java and Scala.
// Java:
public class Point {
private final double x, y;
public Point(final double x, final double y) {
this.x = x;
this.y = y;
}
public Point(
final double x, final double y,
final boolean addToGrid
) {
this(x, y);
if (addToGrid)
grid.add(this);
}
public Point() {
this(0.0, 0.0);
}
public double getX() {
return x;
}
public double getY() {
return y;
}
double distanceToPoint(final Point other) {
return distanceBetweenPoints(x, y,
other.x, other.y);
}
private static Grid grid = new Grid();
static double distanceBetweenPoints(
final double x1, final double y1,
final double x2, final double y2
) {
return Math.hypot(x1 - x2, y1 - y2);
}
}
|
// Scala
class Point(
val x: Double, val y: Double,
addToGrid: Boolean = false
) {
import Point._
if (addToGrid)
grid.add(this)
def this() = this(0.0, 0.0)
def distanceToPoint(other: Point) =
distanceBetweenPoints(x, y, other.x, other.y)
}
object Point {
private val grid = new Grid()
def distanceBetweenPoints(x1: Double, y1: Double,
x2: Double, y2: Double) = {
math.hypot(x1 - x2, y1 - y2)
}
}
|
The above code shows some of the conceptual differences between Java and Scala's handling of classes:
- Scala has no static variables or methods. Instead, it has singleton objects, which are essentially classes with only one object in the class. Singleton objects are declared using
object
instead ofclass
. It is common to place static variables and methods in a singleton object with the same name as the class name, which is then known as a companion object.[11] (The underlying class for the singleton object has a$
appended. Hence, forclass Foo
with companion objectobject Foo
, under the hood there's a classFoo$
containing the companion object's code, and a single object of this class is created, using the singleton pattern.) - In place of constructor parameters, Scala has class parameters, which are placed on the class itself, similar to parameters to a function. When declared with a
val
orvar
modifier, fields are also defined with the same name, and automatically initialized from the class parameters. (Under the hood, external access to public fields always goes through accessor (getter) and mutator (setter) methods, which are automatically created. The accessor function has the same name as the field, which is why it's unnecessary in the above example to explicitly declare accessor methods.) Note that alternative constructors can also be declared, as in Java. Code that would go into the default constructor (other than initializing the member variables) goes directly at class level. - Default visibility in Scala is
public
.
Features (with reference to Java)
Scala has the same compilation model as Java and C#, namely separate compilation and dynamic class loading, so that Scala code can call Java libraries, or .NET libraries in the .NET implementation.
Scala's operational characteristics are the same as Java's. The Scala compiler generates byte code that is nearly identical to that generated by the Java compiler.[11] In fact, Scala code can be decompiled to readable Java code, with the exception of certain constructor operations. To the JVM, Scala code and Java code are indistinguishable. The only difference is a single extra runtime library, scala-library.jar
.[22]
Scala adds a large number of features compared with Java, and has some fundamental differences in its underlying model of expressions and types, which make the language theoretically cleaner and eliminate a number of "corner cases" in Java. From the Scala perspective, this is practically important because a number of additional features in Scala are also available in C#. Examples include:
Syntactic flexibility
As mentioned above, Scala has a good deal of syntactic flexibility, compared with Java. The following are some examples:
- Semicolons are unnecessary; lines are automatically joined if they begin or end with a token that cannot normally come in this position, or if there are unclosed parentheses or brackets.
- Any method can be used as an infix operator, e.g.
"%d apples".format(num)
and"%d apples" format num
are equivalent. In fact, arithmetic operators like+
and<<
are treated just like any other methods, since function names are allowed to consist of sequences of arbitrary symbols (with a few exceptions made for things like parens, brackets and braces that must be handled specially); the only special treatment that such symbol-named methods undergo concerns the handling of precedence. - Methods
apply
andupdate
have syntactic short forms.foo()
—wherefoo
is a value (singleton object or class instance)—is short forfoo.apply()
, andfoo() = 42
is short forfoo.update(42)
. Similarly,foo(42)
is short forfoo.apply(42)
, andfoo(4) = 2
is short forfoo.update(4, 2)
. This is used for collection classes and extends to many other cases, such as STM cells. - Scala distinguishes between no-parens (
def foo = 42
) and empty-parens (def foo() = 42
) methods. When calling an empty-parens method, the parentheses may be omitted, which is useful when calling into Java libraries which do not know this distinction, e.g., usingfoo.toString
instead offoo.toString()
. By convention, a method should be defined with empty-parens when it performs side effects. - Method names ending in colon (
:
) expect the argument on the left-hand-side and the receiver on the right-hand-side. For example, the4 :: 2 :: Nil
is the same asNil.::(2).::(4)
, the first form corresponding visually to the result (a list with first element 4 and second element 2). - Class body variables can be transparently implemented as separate getter and setter methods. For
trait FooLike { var bar: Int }
, an implementation may beobject Foo extends FooLike { private var x = 0; def bar = x; def bar_=(value: Int) { x = value }} } }
. The call site will still be able to use a concisefoo.bar = 42
. - The use of curly braces instead of parentheses is allowed in method calls. This allows pure library implementations of new control structures.[23] For example,
breakable { ... if (...) break() ... }
looks as ifbreakable
was a language defined keyword, but really is just a method taking a thunk argument. Methods that take thunks or functions often place these in a second parameter list, allowing to mix parentheses and curly braces syntax:Vector.fill(4) { math.random }
is the same asVector.fill(4)(math.random)
. The curly braces variant allows the expression to span multiple lines. - For-expressions (explained further down) can accommodate any type that defines monadic methods such as
map
,flatMap
andfilter
.
By themselves, these may seem like questionable choices, but collectively they serve the purpose of allowing domain-specific languages to be defined in Scala without needing to extend the compiler. For example, Erlang's special syntax for sending a message to an actor, i.e. actor ! message
can be (and is) implemented in a Scala library without needing language extensions.
Unified type system
Java makes a sharp distinction between primitive types (e.g. int
and boolean
) and reference types (any class). Only reference types are part of the inheritance scheme, deriving from java.lang.Object
. In Scala, however, all types inherit from a top-level class Any
, whose immediate children are AnyVal
(value types, such as Int
and Boolean
) and AnyRef
(reference types, as in Java). This means that the Java distinction between primitive types and boxed types (e.g. int
vs. Integer
) is not present in Scala; boxing and unboxing is completely transparent to the user. Scala 2.10 allows for new value types to be defined by the user.
For-expressions
Instead of the Java "foreach" loops for looping through an iterator, Scala has a much more powerful concept of for
-expressions. These are similar to list comprehensions in languages such as Haskell, or a combination of list comprehensions and generator expressions in Python. For-expressions using the yield
keyword allow a new collection to be generated by iterating over an existing one, returning a new collection of the same type. They are translated by the compiler into a series of map
, flatMap
and filter
calls. Where yield
is not used, the code approximates to an imperative-style loop, by translating to foreach
.
A simple example is:
val s = for (x <- 1 to 25 if x*x > 50) yield 2*x
The result of running it is the following vector:
Vector(16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50)
(Note that the expression 1 to 25
is not special syntax. The method to
is rather defined in the standard Scala library as an extension method on integers, using a technique known as implicit conversions[24] that allows new methods to be added to existing types.)
A more complex example of iterating over a map is:
// Given a map specifying Twitter users mentioned in a set of tweets,
// and number of times each user was mentioned, look up the users
// in a map of known politicians, and return a new map giving only the
// Democratic politicians (as objects, rather than strings).
val dem_mentions = for {
(mention, times) <- mentions
account <- accounts.get(mention)
if account.party == "Democratic"
} yield (account, times)
Expression (mention, times) <- mentions
is an example of pattern matching (see below). Iterating over a map returns a set of key-value tuples, and pattern-matching allows the tuples to easily be destructured into separate variables for the key and value. Similarly, the result of the comprehension also returns key-value tuples, which are automatically built back up into a map because the source object (from the variable mentions
) is a map. Note that if mentions
instead held a list, set, array or other collection of tuples, exactly the same code above would yield a new collection of the same type.
Functional tendencies
While supporting all of the object-oriented features available in Java (and in fact, augmenting them in various ways), Scala also provides a large number of capabilities that are normally found only in functional programming languages. Together, these features allow Scala programs to be written in an almost completely functional style, and also allow functional and object-oriented styles to be mixed.
Examples are:
- No distinction between statements and expressions
- Type inference
- Anonymous functions with capturing semantics (i.e. closures)
- Immutable variables and objects
- Lazy evaluation
- Delimited continuations (since 2.8)
- Higher-order functions
- Nested functions
- Currying
- Pattern matching
- Algebraic data types (through "case classes")
- Tuples
Everything is an expression
Unlike C or Java, but similar to languages such as Lisp, Scala makes no distinction between statements and expressions. All statements are in fact expressions that evaluate to some value. Functions that would be declared as returning void
in C or Java, and statements like while
that logically do not return a value, are in Scala considered to return the type Unit
, which is a singleton type, with only one object of that type. Functions and operators that never return at all (e.g. the throw
operator or a function that always exits non-locally using an exception) logically have return type Nothing
, a special type containing no objects; that is, a bottom type, i.e. a subclass of every possible type. (This in turn makes type Nothing
compatible with every type, allowing type inference to function correctly.)
Similarly, an if-then-else
"statement" is actually an expression, which produces a value, i.e. the result of evaluating one of the two branches. This means that such a block of code can be inserted wherever an expression is desired, obviating the need for a ternary operator in Scala:
// Java:
int hexDigit = x >= 10 ? x + 'A' - 10 : x + '0';
|
// Scala:
val hexDigit = if (x >= 10) x + 'A' - 10 else x + '0'
|
For similar reasons, return
statements are unnecessary in Scala, and in fact are discouraged. As in Lisp, the last expression in a block of code is the value of that block of code, and if the block of code is the body of a function, it will be returned by the function.
To make it clear that all expressions are functions, even methods that return Unit
are written with an equals sign
def printValue(x: String): Unit = {
println("I ate a %s".format(x))
}
or equivalently (with type inference, and omitting the unnecessary braces):
def printValue(x: String) = println("I ate a %s" format x)
Type inference
Due to type inference, the type of variables, function return values, and many other expressions can typically be omitted, as the compiler can deduce it. Examples are val x = "foo"
(for an immutable, constant variable or immutable object) or var x = 1.5
(for a variable whose value can later be changed). Type inference in Scala is essentially local, in contrast to the more global Hindley-Milner algorithm used in Haskell, ML and other more purely functional languages. This is done to facilitate object-oriented programming. The result is that certain types still need to be declared (most notably, function parameters, and the return types of recursive functions), e.g.
def formatApples(x: Int) = "I ate %d apples".format(x)
or (with a return type declared for a recursive function)
def factorial(x: Int): Int =
if (x == 0)
1
else
x*factorial(x - 1)
Anonymous functions
In Scala, functions are objects, and a convenient syntax exists for specifying anonymous functions. An example is the expression x => x < 2
, which specifies a function with a single parameter, that compares its argument to see if it is less than 2. It is equivalent to the Lisp form (lambda (x) (< x 2))
. Note that neither the type of x
nor the return type need be explicitly specified, and can generally be inferred by type inference; but they can be explicitly specified, e.g. as (x: Int) => x < 2
or even (x: Int) => (x < 2): Boolean
.
Anonymous functions behave as true closures in that they automatically capture any variables that are lexically available in the environment of the enclosing function. Those variables will be available even after the enclosing function returns, and unlike in the case of Java's "anonymous inner classes" do not need to be declared as final. (It is even possible to modify such variables if they are mutable, and the modified value will be available the next time the anonymous function is called.)
An even shorter form of anonymous function uses placeholder variables: For example, the following:
list map { x => sqrt(x) }
can be written more concisely as
list map { sqrt(_) }
or even
list map sqrt
Immutability
Scala enforces a distinction between immutable (unmodifiable, read-only) variables, whose value cannot be changed once assigned, and mutable variables, which can be changed. A similar distinction is made between immutable and mutable objects. The distinction must be made when a variable is declared: Immutable variables are declared with val
while mutable variables use var
. Similarly, all of the collection objects (container types) in Scala, e.g. linked lists, arrays, sets and hash tables, are available in mutable and immutable variants, with the immutable variant considered the more basic and default implementation. The immutable variants are "persistent" data types in that they create a new object that encloses the old object and adds the new member(s); this is similar to how linked lists are built up in Lisp, where elements are prepended by creating a new "cons" cell with a pointer to the new element (the "head") and the old list (the "tail"). This allows for very easy concurrency — no locks are needed as no shared objects are ever modified.
Immutable structures are also constructed efficiently, in the sense that modified instances reuses most of old instance data and unused/unreferenced parts are collected by GC.[25]
Lazy (non-strict) evaluation
Evaluation is strict ("eager") by default. In other words, Scala evaluates expressions as soon as they are available, rather than as needed. However, you can declare a variable non-strict ("lazy") with the lazy
keyword, meaning that the code to produce the variable's value will not be evaluated until the first time the variable is referenced. Non-strict collections of various types also exist (such as the type Stream
, a non-strict linked list), and any collection can be made non-strict with the view
method. Non-strict collections provide a good semantic fit to things like server-produced data, where the evaluation of the code to generate later elements of a list (that in turn triggers a request to a server, possibly located somewhere else on the web) only happens when the elements are actually needed.
Tail recursion
Functional programming languages commonly provide tail call optimization to allow for extensive use of recursion without stack overflow problems. Limitations in Java bytecode complicate tail call optimization on the JVM. In general, a function that calls itself with a tail call can be optimized, but mutually recursive functions cannot. Trampolines have been suggested as a workaround.[26] Trampoline support has been provided by the Scala library with the object scala.util.control.TailCalls
since Scala 2.8.0 (released July 14, 2010).[27]
Case classes and pattern matching
Scala has built-in support for pattern matching, which can be thought of as a more sophisticated, extensible version of a switch statement, where arbitrary data types can be matched (rather than just simple types like integers, booleans and strings), including arbitrary nesting. A special type of class known as a case class is provided, which includes automatic support for pattern matching and can be used to model the algebraic data types used in many functional programming languages. (From the perspective of Scala, a case class is simply a normal class for which the compiler automatically adds certain behaviors that could also be provided manually—e.g. definitions of methods providing for deep comparisons and hashing, and destructuring a case class on its constructor parameters during pattern matching.)
An example of a definition of the quicksort algorithm using pattern matching is as follows:
def qsort(list: List[Int]): List[Int] = list match {
case Nil => Nil
case pivot :: tail =>
val (smaller, rest) = tail.partition(_ < pivot)
qsort(smaller) ::: pivot :: qsort(rest)
}
The idea here is that we partition a list into the elements less than a pivot and the elements not less, recursively sort each part, and paste the results together with the pivot in between. This uses the same divide-and-conquer strategy of mergesort and other fast sorting algorithms.
The match
operator is used to do pattern matching on the object stored in list
. Each case
expression is tried in turn to see if it will match, and the first match determines the result. In this case, Nil
only matches the literal object Nil
, but pivot :: tail
matches a non-empty list, and simultaneously destructures the list according to the pattern given. In this case, the associated code will have access to a local variable named pivot
holding the head of the list, and another variable tail
holding the tail of the list. Note that these variables are read-only, and are semantically very similar to variable bindings established using the let
operator in Lisp and Scheme.
Pattern matching also happens in local variable declarations. In this case, the return value of the call to tail.partition
is a tuple — in this case, two lists. (Tuples differ from other types of containers, e.g. lists, in that they are always of fixed size and the elements can be of differing types — although here they are both the same.) Pattern matching is the easiest way of fetching the two parts of the tuple.
The form _ < pivot
is a declaration of an anonymous function with a placeholder variable; see the section above on anonymous functions.
The list operators ::
(which adds an element onto the beginning of a list, similar to cons
in Lisp and Scheme) and :::
(which appends two lists together, similar to append
in Lisp and Scheme) both appear. Despite appearances, there is nothing "built-in" about either of these operators. As specified above, any string of symbols can serve as function name, and a method applied to an object can be written "infix"-style without the period or parentheses. The line above as written:
qsort(smaller) ::: pivot :: qsort(rest)
could also be written as follows:
qsort(rest).::(pivot).:::(qsort(smaller))
in more standard method-call notation. (Methods that end with a colon are right-associative and bind to the object to the right.)
Partial functions
In the pattern-matching example above, the body of the match
operator is a partial function, which consists of a series of case
expressions, with the first matching expression prevailing, similar to the body of a switch statement. Partial functions are also used in the exception-handling portion of a try
statement:
try {
...
} catch {
case nfe:NumberFormatException => { println(nfe); List(0) }
case _ => Nil
}
Finally, a partial function can be used by itself, and the result of calling it is equivalent to doing a match
over it. For example, the previous code for quicksort can be written as follows:
val qsort: List[Int] => List[Int] = {
case Nil => Nil
case pivot :: tail =>
val (smaller, rest) = tail.partition(_ < pivot)
qsort(smaller) ::: pivot :: qsort(rest)
}
Here a read-only variable is declared whose type is a function from lists of integers to lists of integers, and bind it to a partial function. (Note that the single parameter of the partial function is never explicitly declared or named.) However, we can still call this variable exactly as if it were a normal function:
scala> qsort(List(6,2,5,9)) res32: List[Int] = List(2, 5, 6, 9)
Object-oriented extensions
Scala is a pure object-oriented language in the sense that every value is an object. Data types and behaviors of objects are described by classes and traits. Class abstractions are extended by subclassing and by a flexible mixin-based composition mechanism to avoid the problems of multiple inheritance.
Traits are Scala's replacement for Java's interfaces. Interfaces in Java versions under 8 are highly restricted, able only to contain abstract function declarations. This has led to criticism that providing convenience methods in interfaces is awkward (the same methods must be reimplemented in every implementation), and extending a published interface in a backwards-compatible way is impossible. Traits are similar to mixin classes in that they have nearly all the power of a regular abstract class, lacking only class parameters (Scala's equivalent to Java's constructor parameters), since traits are always mixed in with a class. The super
operator behaves specially in traits, allowing traits to be chained using composition in addition to inheritance. The following example is a simple window system:
abstract class Window {
// abstract
def draw()
}
class SimpleWindow extends Window {
def draw() {
println("in SimpleWindow")
// draw a basic window
}
}
trait WindowDecoration extends Window { }
trait HorizontalScrollbarDecoration extends WindowDecoration {
// "abstract override" is needed here in order for "super()" to work because the parent
// function is abstract. If it were concrete, regular "override" would be enough.
abstract override def draw() {
println("in HorizontalScrollbarDecoration")
super.draw()
// now draw a horizontal scrollbar
}
}
trait VerticalScrollbarDecoration extends WindowDecoration {
abstract override def draw() {
println("in VerticalScrollbarDecoration")
super.draw()
// now draw a vertical scrollbar
}
}
trait TitleDecoration extends WindowDecoration {
abstract override def draw() {
println("in TitleDecoration")
super.draw()
// now draw the title bar
}
}
A variable may be declared as follows:
val mywin = new SimpleWindow with VerticalScrollbarDecoration with HorizontalScrollbarDecoration with TitleDecoration
The result of calling mywin.draw()
is
in TitleDecoration in HorizontalScrollbarDecoration in VerticalScrollbarDecoration in SimpleWindow
In other words, the call to draw
first executed the code in TitleDecoration
(the last trait mixed in), then (through the super()
calls) threaded back through the other mixed-in traits and eventually to the code in Window
itself, even though none of the traits inherited from one another. This is similar to the decorator pattern, but is more concise and less error-prone, as it doesn't require explicitly encapsulating the parent window, explicitly forwarding functions whose implementation isn't changed, or relying on run-time initialization of entity relationships. In other languages, a similar effect could be achieved at compile-time with a long linear chain of implementation inheritance, but with the disadvantage compared to Scala that one linear inheritance chain would have to be declared for each possible combination of the mix-ins.
Expressive type system
Scala is equipped with an expressive static type system that enforces the safe and coherent use of abstractions. In particular, the type system supports:
- Classes and abstract types as object members
- Structural types
- Path-dependent types
- Compound types
- Explicitly typed self references
- Generic classes
- Polymorphic methods
- Upper and lower type bounds
- Variance
- Annotation
- Views
Scala is able to infer types by usage. This makes most static type declarations optional. Static types need not be explicitly declared unless a compiler error indicates the need. In practice, some static type declarations are included for the sake of code clarity.
Type enrichment
A common technique in Scala, known as "enrich my library" (formerly "pimp my library",[24] now discouraged due to its connotation), allows new methods to be used as if they were added to existing types. This is similar to the C# concept of extension methods but more powerful, because the technique is not limited to adding methods and can, for instance, be used to implement new interfaces. In Scala, this technique involves declaring an implicit conversion from the type "receiving" the method to a new type (typically, a class) that wraps the original type and provides the additional method. If a method cannot be found for a given type, the compiler automatically searches for any applicable implicit conversions to types that provide the method in question.
This technique allows new methods to be added to an existing class using an add-on library such that only code that imports the add-on library gets the new functionality, and all other code is unaffected.
The following example shows the enrichment of type Int
with methods isEven
and isOdd
:
object MyExtensions {
implicit class IntPredicates(i: Int) {
def isEven = i % 2 == 0
def isOdd = !isEven
}
}
import MyExtensions._ // bring implicit enrichment into scope
4.isEven // -> true
Importing the members of MyExtensions
brings the implicit conversion to extension class IntPredicates
into scope.[28]
Concurrency
Scala standard library includes support for the actor model, in addition to the standard Java concurrency APIs. Typesafe provides a platform[29] that includes Akka,[30] a separate open source framework that provides actor-based concurrency. Akka actors may be distributed or combined with software transactional memory ("transactors"). Alternative CSP implementations for channel-based message passing are Communicating Scala Objects,[31] or simply via JCSP.
An Actor is like a thread instance with a mailbox. It can be created by system.actorOf
, overriding the receive
method to receive messages and using the !
(exclamation point) method to send a message.[32]
The following example shows an EchoServer which can receive messages and then print them.
val echoServer = actor(new Act {
become {
case msg => println("echo " + msg)
}
})
echoServer ! "hi"
Scala also comes with built-in support for data-parallel programming in the form of Parallel Collections [33] integrated into its Standard Library since version 2.9.0.
The following example shows how to use Parallel Collections to improve performance.[34]
val urls = List("http://scala-lang.org", "https://github.com/scala/scala")
def fromURL(url: String) = scala.io.Source.fromURL(url)
.getLines().mkString("\n")
val t = System.currentTimeMillis()
urls.par.map(fromURL(_))
println("time: " + (System.currentTimeMillis - t) + "ms")
Cluster computing
Two significant open source cluster computing solutions are based on Scala: Apache Spark and Apache Ignite (adapted from the commercial GridGain product).[35] Additionally, Apache Kafka, the publish-subscribe message queue popular with Spark and other stream processing technologies, is written in Scala.
Testing
There are several ways to test code in Scala:
- ScalaTest supports multiple testing styles and can integrate with Java-based testing frameworks[36]
- ScalaCheck, a library similar to Haskell's QuickCheck[37]
- specs2, a library for writing executable software specifications[38]
- ScalaMock provides support for testing high-order and curried functions[39]
- JUnit or TestNG, two popular testing frameworks written in Java
Versions
Version | Released | Features | Status | Notes |
---|---|---|---|---|
2.0[40] | 12-Mar-2006 | _ | _ | _ |
2.1.8[41] | 23-Aug-2006 | _ | _ | _ |
2.3.0[42] | 23-Nov-2006 | _ | _ | _ |
2.4.0[43] | 09-Mar-2007 | _ | _ | _ |
2.5.0[44] | 02-May-2007 | _ | _ | _ |
2.6.0[45] | 27-Jul-2007 | _ | _ | _ |
2.7.0[46] | 07-Feb-2008 | _ | _ | _ |
2.8.0[47] | 14-Jul-2010 | Revision the common, uniform, and all-encompassing framework for collection types. | _ | _ |
2.9.0[48] | 12-May-2011 | _ | _ | _ |
2.10[49] | 04-Jan-2013 |
Experimental features |
_ | _ |
2.10.2[59] | 06-Jun-2013 | _ | _ | _ |
2.10.3[60] | 01-Oct-2013 | _ | _ | _ |
2.10.4[61] | 18-Mar-2014 | _ | _ | _ |
2.10.5[62] | 05-Mar-2015 | _ | _ | _ |
2.11.0[63] | 21-Apr-2014 | _ | _ | _ |
2.11.1[64] | 20-May-2014 | _ | _ | _ |
2.11.2[65] | 22-Jul-2014 | _ | _ | _ |
2.11.4[66] | 31-Oct-2014 | _ | _ | _ |
2.11.5[67] | 08-Jan-2015 | _ | _ | _ |
2.11.6[68] | 05-Mar-2015 | _ | _ | _ |
2.11.7[69] | 23-Jun-2015 | _ | Current | _ |
Comparison with other JVM languages
Scala is often compared with Groovy and Clojure, two other programming languages also using the JVM. Substantial differences between these languages are found in the type system, in the extent to which each language supports object-oriented and functional programming, and in the similarity of their syntax to the syntax of Java.
Scala is statically typed, while both Groovy and Clojure are dynamically typed. This makes the type system more complex and difficult to understand but allows almost all type errors to be caught at compile-time and can result in significantly faster execution. By contrast, dynamic typing requires more testing to ensure program correctness and is generally slower in order to allow greater programming flexibility and simplicity. In regard to speed differences, current versions of Groovy and Clojure allow for optional type annotations to help programs avoid the overhead of dynamic typing in cases where types are practically static. This overhead is further reduced when using recent versions of the JVM, which has been enhanced with an "invoke dynamic" instruction for methods that are defined with dynamically typed arguments. These advances reduce the speed gap between static and dynamic typing, although a statically typed language, like Scala, is still the preferred choice when execution efficiency is very important.
In regard to programming paradigms, Scala inherits the object-oriented model of Java and extends it in various ways. Groovy, while also strongly object-oriented is more focused in reducing verbosity. In Clojure, object-oriented programming is deemphasised with functional programming being the primary strength of the language. Scala also has many functional programming facilities, including features found in advanced functional languages like Haskell, and tries to be agnostic between the two paradigms, letting the developer choose between the two paradigms or, more frequently, some combination thereof.
In regard to syntax similarity with Java, Scala inherits a lot of Java's syntax, as is the case with Groovy. Clojure on the other hand follows the Lisp syntax, which is different in both appearance and philosophy. However, learning Scala is also considered difficult because of its many advanced features. This is not the case with Groovy, despite the fact that it is also a feature-rich language, mainly because it was designed to be primarily a scripting language.
Adoption
Language rankings
Scala was voted the most popular JVM scripting language at the 2012 JavaOne conference.[11]
As of 2013[update], all JVM-based derivatives (Scala/Groovy/Clojure) are significantly less popular than the original Java language itself which is usually ranked first or second,[70][71][72] and which is also simultaneously evolving over time.
As of December 2013, the TIOBE index[71] of programming language popularity shows Scala in 31st place with 0.342% of programmer mindshare (as measured by internet search engine rankings and similar publication-counting), while it was below the top 50 threshold the year before. Scala is now ahead of functional languages Haskell (50th) and Erlang (>50), as well as JVM competitors Groovy (47th) and Clojure (>50).
Another measure, the RedMonk Programming Language Rankings, as of June 2013 placed Scala 12th, based on 15th position in terms of number of GitHub projects and 16th in terms of number of questions tagged on Stack Overflow.[70] (Groovy was 18th place; Clojure was 22nd.)[70] Here, Scala is shown clearly behind a first-tier group of 11 languages (including Java, C, Python, PHP, Ruby, etc.), but leading a second-tier group.
The ThoughtWorks Technology Radar, which is an opinion based half-yearly report of a group of senior technologists,[73] recommends Scala adoption in its languages and frameworks category.[74]
According to Indeed.com Job Trends, Scala demand has been rapidly increasing since 2010, trending ahead of Clojure but behind Groovy.[75]
Companies
In April 2009, Twitter announced that it had switched large portions of its backend from Ruby to Scala and intended to convert the rest.[76]
Gilt uses Scala and Play Framework.[77]
Foursquare uses Scala and Lift.[78]
SpinGo uses Scala and Akka.[79]
Coursera uses Scala and Play Framework.[80]
In April 2011, The Guardian newspaper's website guardian.co.uk announced that it was switching from Java to Scala,[81] starting with the Content API for selecting and collecting news content.[82] The website is one of the highest-traffic English-language news websites and, according to its editor, has the second largest online readership of any English-language newspaper in the World, after the New York Times.[83] The New York Times itself revealed in 2014 that its internal content management system Blackbeard is built using Scala, Akka and Play.[84] The Huffington Post newspaper has started to employ Scala as part of its contents delivery system Athena in 2013.[85]
Swiss bank UBS approved Scala for general production usage.[86]
The BitGold platform was built entirely on Scala and Play Framework.[87]
LinkedIn uses the Scalatra microframework to power its Signal API.[88]
Meetup uses Unfiltered toolkit for real-time APIs.[89]
Remember the Milk uses Unfiltered toolkit, Scala and Akka for public API and real time updates.[90]
Verizon seeking to make "a next generation framework" using Scala.[91]
Criticism
In November, 2011, Yammer moved away from Scala for reasons that included the learning curve for new team members and incompatibility from one version of the Scala compiler to the next.[92] Others criticize Scala for lack of readability regarding implicit parameters, that it is not possible to avoid Scala's more arcane features once one needs to pull in a library that uses them, and that overall, "Scala's difficulty outweighs its value."[93][94]
See also
- sbt, a widely used build tool for Scala projects.
- Play!, an open source Web application framework that supports Scala
References
- ^ "Scala 2.11.7 is now available!". 2015-06-23. Retrieved 2015-07-03.
- ^ "Scala.js". Retrieved 2015-07-27.
- ^ "Scala 2.11.1 is now available!".
- ^ Fogus, Michael (6 August 2010). "MartinOdersky take(5) toList". Send More Paramedics. Retrieved 2012-02-09.
- ^ "Scala Macros".
- ^ a b c d Martin Odersky et al., An Overview of the Scala Programming Language, 2nd Edition
- ^ Odersky, Martin (2008). Programming in Scala. Mountain View, California: Artima. p. 3. ISBN 9780981531601. Retrieved 12 June 2014.
- ^ "Frequently Asked Questions - Java Interoperability". scala-lang.org. Retrieved 2015-02-06.
- ^ Loverdo, Christos (2010). Steps in Scala: An Introduction to Object-Functional Programming. Cambridge University Press. p. xiii. ISBN 9781139490948. Retrieved 31 July 2014.
- ^ a b c Martin Odersky, "A Brief History of Scala", Artima.com weblogs, June 9, 2006
- ^ a b c d e Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1145/2591013, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1145/2591013
instead. - ^ Martin Odersky, "The Scala Language Specification Version 2.7"
- ^ Expunged the .net backend. by paulp · Pull Request #1718 · scala/scala · GitHub. Github.com (2012-12-05). Retrieved on 2013-11-02.
- ^ "Scala Team Wins ERC Grant". Retrieved 4 July 2015.
- ^ "Commercial Support for Scala". 2011-05-12. Retrieved 2011-08-18.
- ^ "Why We Invested in Typesafe: Modern Applications Demand Modern Tools". 2011-05-12. Retrieved 2011-08-18.
- ^ "Open-source Scala gains commercial backing". 2011-05-12. Retrieved 2011-10-09.
- ^ "Cloud computing pioneer Martin Odersky takes wraps off his new company Typesafe". 2011-05-12. Retrieved 2011-08-24.
- ^ "Developing for Android". Retrieved 4 July 2015.
- ^ "Scala License | The Scala Programming Language". Scala-lang.org. Retrieved 2013-06-25.
- ^ "Getting Started with Scala". scala-lang.org. 15 July 2008. Retrieved 31 July 2014.
- ^ "Home". Blog.lostlake.org. Retrieved 2013-06-25.[dead link ]
- ^ Scala's built-in control structures such as
if
orwhile
cannot be re-implemented. There is a research project, Scala-Virtualized, that aimed at removing these restrictions: Adriaan Moors, Tiark Rompf, Philipp Haller and Martin Odersky. Scala-Virtualized. Proceedings of the ACM SIGPLAN 2012 workshop on Partial evaluation and program manipulation, 117–120. July 2012. - ^ a b "Pimp my Library". Artima.com. 2006-10-09. Retrieved 2013-06-25.
- ^ "Collections - Concrete Immutable Collection Classes - Scala Documentation". Retrieved 4 July 2015.
- ^ Rich Dougherty. "Rich Dougherty's blog". Retrieved 4 July 2015.
- ^ "TailCalls - Scala Standard Library API (Scaladoc) 2.10.2 - scala.util.control.TailCalls". Scala-lang.org. Retrieved 2013-06-25.
- ^ Implicit classes were introduced in Scala 2.10 to make method extensions more concise. This is equivalent to adding a method
implicit def IntPredicate(i: Int) = new IntPredicate(i)
. The class can also be defined asimplicit class IntPredicates(val i: Int) extends AnyVal { ... }
, producing a so-called value class, also introduced in Scala 2.10. The compiler will then eliminate actual instantiations and generate static methods instead, allowing extension methods to have virtually no performance overhead. - ^ Typesafe Inc. "Reactive – Typesafe Platform". Typesafe. Retrieved 2013-06-25.
- ^ What is Akka?, Akka online documentation
- ^ Communicating Scala Objects, Bernard Sufrin, Communicating Process Architectures 2008
- ^ Kay Yan. "Scala Tour". Retrieved 4 July 2015.
- ^ "Parallelcollections - Overview - Scala Documentation". Docs.scala-lang.org. Retrieved 2013-06-25.
- ^ Kay Yan. "Scala Tour". Retrieved 4 July 2015.
- ^ Murphy, Ian (2014-11-04). "GridGain becomes Apache Ignite". business-cloud.com. Retrieved 2014-11-07.
- ^ Kops, Micha (2013-01-13). "A short Introduction to ScalaTest". hascode.com. Retrieved 2014-11-07.
- ^ Nilsson, Rickard (2008-11-17). "ScalaCheck 1.5". scala-lang.org. Retrieved 2014-11-07.
- ^ "Build web applications using Scala and the Play Framework". workwithplay.com. 2013-05-22. Retrieved 2014-11-07.
- ^ Butcher, Paul (2012-06-04). "ScalaMock 3.0 Preview Release". paulbutcher.com. Retrieved 2014-11-07.
- ^ "Changes in Version 2.0 (12-Mar-2006)". scala-lang.org. 2006-03-12. Retrieved 2014-11-07.
- ^ "Changes in Version 2.1.8 (23-Aug-2006)". scala-lang.org. 2006-08-23. Retrieved 2014-11-07.
- ^ "Changes in Version 2.3.0 (23-Nov-2006)". scala-lang.org. 2006-11-23. Retrieved 2014-11-07.
- ^ "Changes in Version 2.4.0 (09-Mar-2007)". scala-lang.org. 2007-03-09. Retrieved 2014-11-07.
- ^ "Changes in Version 2.5 (02-May-2007)". scala-lang.org. 2007-05-02. Retrieved 2014-11-07.
- ^ "Changes in Version 2.6 (27-Jul-2007)". scala-lang.org. 2007-06-27. Retrieved 2014-11-07.
- ^ "Changes in Version 2.7.0 (07-Feb-2008)". scala-lang.org. 2008-02-07. Retrieved 2014-11-07.
- ^ "Changes in Version 2.8.0 (14-Jul-2010)". scala-lang.org. 2010-07-10. Retrieved 2014-11-07.
- ^ "Changes in Version 2.9.0 (12-May-2011)". scala-lang.org. 2011-05-12. Retrieved 2014-11-07.
- ^ "Changes in Version 2.10.0". scala-lang.org. 2013-01-04. Retrieved 2014-11-07.
- ^ Harrah, Mark. "Value Classes and Universal Traits". scala-lang.org. Retrieved 2014-11-07.
- ^ Suereth, Josh. "SIP-13 - Implicit classes". scala-lang.org. Retrieved 2014-11-07.
- ^ Suereth, Josh. "String Interpolation". scala-lang.org. Retrieved 2014-11-07.
- ^ Haller, Philipp; Prokopec, Aleksandar. "Futures and Promises". scala-lang.org. Retrieved 2014-11-07.
- ^ "SIP-17 - Type Dynamic". scala-lang.org. Retrieved 2014-11-07.
- ^ "SIP-18 - Modularizing Language Features". scala-lang.org. Retrieved 2014-11-07.
- ^ Prokopec, Aleksandar; Miller, Heather. "Parallel Collections". scala-lang.org. Retrieved 2014-11-07.
- ^ Miller, Heather; Burmako, Eugene. "Reflection Overview". scala-lang.org. Retrieved 2014-11-07.
- ^ Burmako, Eugene. "Def Macros". scala-lang.org. Retrieved 2014-11-07.
- ^ "Scala 2.10.2 is now available!". scala-lang.org. 2013-06-06. Retrieved 2014-11-07.
- ^ "Scala 2.10.3 is now available!". scala-lang.org. 2013-10-01. Retrieved 2014-11-07.
- ^ "Scala 2.10.4 is now available!". scala-lang.org. 2014-03-18. Retrieved 2015-01-07.
- ^ "Scala 2.10.5 is now available!". scala-lang.org. 2015-03-04. Retrieved 2015-03-23.
- ^ "Scala 2.11.0 is now available!". scala-lang.org. 2014-04-21. Retrieved 2014-11-07.
- ^ "Scala 2.11.1 is now available!". scala-lang.org. 2014-05-20. Retrieved 2014-11-07.
- ^ "Scala 2.11.2 is now available!". scala-lang.org. 2014-07-22. Retrieved 2014-11-07.
- ^ "Scala 2.11.4 is now available!". scala-lang.org. 2014-10-31. Retrieved 2014-11-07.
- ^ "Scala 2.11.5 is now available!". scala-lang.org. 2015-01-08. Retrieved 2015-01-22.
- ^ "Scala 2.11.6 is now available!". scala-lang.org. 2015-03-05. Retrieved 2015-03-12.
- ^ "Scala 2.11.7 is now available!". scala-lang.org. 2015-06-23. Retrieved 2015-07-03.
- ^ a b c "The RedMonk Programming Language Rankings: June 2013".
- ^ a b "TIOBE Index for December 2013".
- ^ "The Transparent Language Popularity Index, July 2013".
- ^ "ThoughtWorks Technology Radar FAQ".
- ^ "ThoughtWorks Technology Radar MAY 2013" (PDF).
- ^ http://www.indeed.com/trendgraph/jobgraph.png?q=scala,java,akka,groovy&relative=1
- ^ Greene, Kate (April 1, 2009). "The Secret Behind Twitter's Growth, How a new Web programming language is helping the company handle its increasing popularity". Technology Review. MIT. Retrieved April 6, 2009.
- ^ Typesafe Inc. "July 15, 2013 - Play Framework, Akka and Scala at Gilt Groupe - Typesafe". Retrieved 4 July 2015.
- ^ "Scala, Lift, and the Future". Retrieved 4 July 2015.
- ^ "SpinGo - SpinGo + Scala". Retrieved 4 July 2015.
- ^ Coursera Engineering. "Why we love Scala at Coursera". Retrieved 4 July 2015.
- ^ "Guardian switching from Java to Scala". Heise Online. 2011-04-05. Retrieved 2011-04-05.
- ^ "Guardian.co.uk Switching from Java to Scala". InfoQ.com. 2011-04-04. Retrieved 2011-04-05.
- ^ David Reid and Tania Teixeira (26 February 2010). "Are people ready to pay for online news?". BBC. Retrieved 2010-02-28.
- ^ Roy, Suman and Sundaresan, Krishna (2014-05-13). "Building Blackbeard: A Syndication System Powered By Play, Scala and Akka". Retrieved 2014-07-20.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ Pavley, John (2013-08-11). "Sneak Peek: HuffPost Brings Real Time Collaboration to the Newsroom". Retrieved 2014-07-20.
- ^ Binstock, Andrew (2011-07-14). "Interview with Scala's Martin Odersky". Dr. Dobb's Journal. Retrieved 2012-02-10.
- ^ http://www.bitgold.com | BitGold built on Scala and Play Framework
- ^ Synodinos, Dionysios G. (2010-10-11). "LinkedIn Signal: A Case Study for Scala, JRuby and Voldemort". InfoQ.
- ^ "Real-life Meetups Deserve Real-time APIs".
- ^ "Real time updating comes to the Remember The Milk web app".
- ^ "Senior Scala Engineer". Retrieved 2014-08-18.
- ^ Hale, Coda (29 November 2011). "The Rest of the Story". codahale.com. Retrieved 7 November 2013.
- ^ Allan, Graham (23 June 2013). "Using Scala Will Make You Less Productive". grundlefleck.github.io. Retrieved 7 November 2013.
- ^ Pollack, David (14 September 2011). "Scala use is less good than Java use for at least half of all Java projects". Retrieved 7 November 2013.
Further reading
- Suereth, Joshua D. (Spring 2011). Scala in Depth. Manning Publications. p. 225. ISBN 978-1-935182-70-2.
- Meredith, Gregory (2011). Monadic Design Patterns for the Web (PDF) (1st ed.). p. 300.
- Raychaudhuri, Nilanjan (Fall 2011). Scala in Action (1st ed.). Manning. p. 525. ISBN 978-1-935182-75-7.
- Wampler, Dean; Payne, Alex (September 15, 2009). Programming Scala: Scalability = Functional Programming + Objects (1st ed.). O'Reilly Media. p. 448. ISBN 0-596-15595-6.
- Odersky, Martin; Spoon, Lex; Venners, Bill (December 13, 2010). Programming in Scala: A Comprehensive Step-by-step Guide (2nd ed.). Artima Inc. pp. 883/852. ISBN 978-0-9815316-4-9.
- Pollak, David (May 25, 2009). Beginning Scala (1st ed.). Apress. p. 776. ISBN 1-4302-1989-0.
- Perrett, Tim (July 2011). Lift in Action (1st ed.). Manning. p. 450. ISBN 978-1-935182-80-1.
- Loverdos, Christos; Syropoulos, Apostolos (September 2010). Steps in Scala: An Introduction to Object-Functional Programming (1st ed.). Cambridge University Press. pp. xviii + 485. ISBN 978-0-521-74758-5.
- Subramaniam, Venkat (July 28, 2009). Programming Scala: Tackle Multi-Core Complexity on the Java Virtual Machine (1st ed.). Pragmatic Bookshelf. p. 250. ISBN 1-934356-31-X.
- Horstmann, Cay (March 2012). Scala for the Impatient (1st ed.). Addison-Wesley Professional. p. 360. ISBN 0-321-77409-4.
External links
- Free software programmed in Scala
- Concurrent programming languages
- Java programming language family
- JVM programming languages
- Functional languages
- Object-oriented programming languages
- Scala (programming language)
- Scripting languages
- Statically typed programming languages
- 2003 introductions
- Programming languages created in 2003
- Software using the BSD license
- Pattern matching programming languages