Jump to content

Ideal norm: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m link, ce etc.
move all citations to footnotes
Line 2: Line 2:


== Relative norm ==
== Relative norm ==
Let ''A'' be a [[Dedekind domain]] with [[field of fractions]] ''K'' and [[integral closure]] of ''B'' in a finite [[separable extension]] ''L'' of ''K''. (this implies that ''B'' is also a Dedekind domain.) Let <math>\mathcal{I}_A</math> and <math>\mathcal{I}_B</math> be the [[ideal group]]s of ''A'' and ''B'', respectively (i.e., the sets of nonzero [[fractional ideal]]s.) Following {{harv|Serre|1979}}, the '''norm map'''
Let ''A'' be a [[Dedekind domain]] with [[field of fractions]] ''K'' and [[integral closure]] of ''B'' in a finite [[separable extension]] ''L'' of ''K''. (this implies that ''B'' is also a Dedekind domain.) Let <math>\mathcal{I}_A</math> and <math>\mathcal{I}_B</math> be the [[ideal group]]s of ''A'' and ''B'', respectively (i.e., the sets of nonzero [[fractional ideal]]s.) Following the technique developed by [[Jean-Pierre Serre]], the '''norm map'''
:<math>N_{B/A}\colon \mathcal{I}_B \to \mathcal{I}_A</math>
:<math>N_{B/A}\colon \mathcal{I}_B \to \mathcal{I}_A</math>
is the unique group homomorphism that satisfies
is the unique group homomorphism that satisfies
Line 8: Line 8:
for all nonzero prime ideals <math>\mathfrak q</math> of ''B'', where <math>\mathfrak p = \mathfrak q\cap A</math> is the prime ideal of ''A'' lying below <math>\mathfrak q</math>.
for all nonzero prime ideals <math>\mathfrak q</math> of ''B'', where <math>\mathfrak p = \mathfrak q\cap A</math> is the prime ideal of ''A'' lying below <math>\mathfrak q</math>.


Alternatively, for any <math>\mathfrak b\in\mathcal{I}_B</math> one can equivalently define <math>N_{B/A}(\mathfrak{b})</math> to be the fractional ideal of ''A'' generated by the set <math>\{ N_{L/K}(x) | x \in \mathfrak{b} \}</math> of [[field norm]]s of elements of ''B''.<ref>Janusz, Proposition I.8.2</ref>
Alternatively, for any <math>\mathfrak b\in\mathcal{I}_B</math> one can equivalently define <math>N_{B/A}(\mathfrak{b})</math> to be the fractional ideal of ''A'' generated by the set <math>\{ N_{L/K}(x) | x \in \mathfrak{b} \}</math> of [[field norm]]s of elements of ''B''.<ref name="Janusz">{{citation
|last=Janusz
|first=Gerald J.
|title=Algebraic number fields
|edition=second
|series=[[Graduate Studies in Mathematics]]
|volume=7
|publisher=American Mathematical Society
|place=Providence, Rhode Island
|date=1996
|isbn=0-8218-0429-4
|mr=1362545 (96j:11137)
|at=Proposition I.8.2
}}</ref>


For <math>\mathfrak a \in \mathcal{I}_A</math>, one has <math>N_{B/A}(\mathfrak a B) = \mathfrak a^n</math>, where <math>n = [L : K]</math>. The ideal norm of a [[principal ideal]] is thus compatible with the field norm of an element: <math>N_{B/A}(xB) = N_{L/K}(x)A.</math><ref>Serre, 1.5, Proposition 14.</ref>
For <math>\mathfrak a \in \mathcal{I}_A</math>, one has <math>N_{B/A}(\mathfrak a B) = \mathfrak a^n</math>, where <math>n = [L : K]</math>. The ideal norm of a [[principal ideal]] is thus compatible with the field norm of an element: <math>N_{B/A}(xB) = N_{L/K}(x)A.</math><ref name="Serre">{{citation
|last=Serre
|first=Jean-Pierre
|title=Local fields,
|series=Graduate Texts in Mathematics
|volume=67
|others=Translated from the French by Marvin Jay Greenberg
|publisher=Springer-Verlag
|place=New York
|date=1979
|isbn=0-387-90424-7
|mr=554237 (82e:12016)
|at=1.5, Proposition 14
}}</ref>


Let <math>L/K</math> be a [[Galois extension]] of [[number field]]s with [[ring of integer|rings of integers]] <math>\mathcal{O}_K\subset \mathcal{O}_L</math>. Then the preceding applies with <math>A = \mathcal{O}_K, B = \mathcal{O}_L</math>, and for any <math>\mathfrak b\in\mathcal{I}_{\mathcal{O}_L}</math> we have
Let <math>L/K</math> be a [[Galois extension]] of [[number field]]s with [[ring of integer|rings of integers]] <math>\mathcal{O}_K\subset \mathcal{O}_L</math>. Then the preceding applies with <math>A = \mathcal{O}_K, B = \mathcal{O}_L</math>, and for any <math>\mathfrak b\in\mathcal{I}_{\mathcal{O}_L}</math> we have

:<math>N_{\mathcal{O}_L/\mathcal{O}_K}(\mathfrak b)=\mathcal{O}_K \cap\prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma (\mathfrak b),</math>
:<math>N_{\mathcal{O}_L/\mathcal{O}_K}(\mathfrak b)=\mathcal{O}_K \cap\prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma (\mathfrak b),</math>

which is an element of <math>\mathcal{I}_{\mathcal{O}_K}</math>. The notation <math>N_{\mathcal{O}_L/\mathcal{O}_K}</math> is sometimes shortened to <math>N_{L/K}</math>, an [[abuse of notation]] that is compatible with also writing <math>N_{L/K}</math> for the field norm, as noted above.
which is an element of <math>\mathcal{I}_{\mathcal{O}_K}</math>. The notation <math>N_{\mathcal{O}_L/\mathcal{O}_K}</math> is sometimes shortened to <math>N_{L/K}</math>, an [[abuse of notation]] that is compatible with also writing <math>N_{L/K}</math> for the field norm, as noted above.


Line 25: Line 49:
Let <math>L</math> be a [[Algebraic number field|number field]] with ring of integers <math>\mathcal{O}_L</math>, and <math>\mathfrak a</math> a nonzero (integral) ideal of <math>\mathcal{O}_L</math>.
Let <math>L</math> be a [[Algebraic number field|number field]] with ring of integers <math>\mathcal{O}_L</math>, and <math>\mathfrak a</math> a nonzero (integral) ideal of <math>\mathcal{O}_L</math>.
The absolute norm of <math>\mathfrak a</math> is
The absolute norm of <math>\mathfrak a</math> is
:<math>N(\mathfrak a) :=\left [ \mathcal{O}_L: \mathfrak a\right ]=|\mathcal{O}_L/\mathfrak a|.\,</math>
:<math>N(\mathfrak a) :=\left [ \mathcal{O}_L: \mathfrak a\right ]=\left|\mathcal{O}_L/\mathfrak a\right|.\,</math>
By convention, the norm of the zero ideal is taken to be zero.
By convention, the norm of the zero ideal is taken to be zero.


If <math>\mathfrak a=(a)</math> is a principal ideal, then <math>N(\mathfrak a)=|N_{L/\mathbb{Q}}(a)|</math>.<ref>Marcus, Theorem 22c, pp. 65-66.</ref>
If <math>\mathfrak a=(a)</math> is a principal ideal, then <math>N(\mathfrak a)=\left|N_{L/\mathbb{Q}}(a)\right|</math>.<ref name="Marcus">{{citation
|last=Marcus
|first=Daniel A.

The norm is [[Completely multiplicative function|completely multiplicative]]: if <math>\mathfrak a</math> and <math>\mathfrak b</math> are ideals of <math>\mathcal{O}_L</math>, then <math>N(\mathfrak a\cdot\mathfrak b)=N(\mathfrak a)N(\mathfrak b)</math>.<ref>Marcus, Theorem 22a, pp. 65-66</ref> Thus the absolute norm extends uniquely to a group homomorphism
:<math>N\colon\mathcal{I}_{\mathcal{O}_L}\to\mathbb{Q}_{>0}^\times,</math>
defined for all nonzero fractional ideals of <math>\mathcal{O}_L</math>.

The norm of an ideal <math>\mathfrak a</math> can be used to give an upper bound on the field norm of the smallest nonzero element it contains: there always exists a nonzero <math>a\in\mathfrak a</math> for which
:<math>|N_{L/\mathbb{Q}}(a)|\leq \left ( \frac{2}{\pi}\right )^s \sqrt{|\Delta_L|}N(\mathfrak a),</math>
where <math>\Delta_L</math> is the [[Discriminant of an algebraic number field|discriminant]] of <math>L</math> and <math>s</math> is the number of pairs of (non-real) complex embeddings of <math>L</math> into <math>\mathbb{C}</math> (the number of complex places of <math>L</math>).<ref>Neukirch, Lemma 6.2</ref>

==See also==
*[[Field norm]]
*[[Dedekind zeta function]]

==References==
{{reflist}}
*{{citation
|author=Janusz, Gerald J.
|title=Algebraic number fields
|edition=second
|series=[[Graduate Studies in Mathematics]]
|volume=7
|publisher=American Mathematical Society
|place=Providence, Rhode Island
|date=1996
|pages=x+276
|isbn=0-8218-0429-4
|mr=1362545 (96j:11137)
}}
*{{citation
|author=Marcus, Daniel A.
|title=Number fields
|title=Number fields
|series=Universitext
|series=Universitext
Line 64: Line 60:
|place=New York
|place=New York
|date=1977
|date=1977
|pages=viii+279
|isbn=0-387-90279-1
|isbn=0-387-90279-1
|mr=0457396 (56 #15601)
|mr=0457396 (56 #15601)
|at=Theorem 22c
}}
}}</ref>
*{{citation

|author=Jürgen Neukirch
The norm is [[Completely multiplicative function|completely multiplicative]]: if <math>\mathfrak a</math> and <math>\mathfrak b</math> are ideals of <math>\mathcal{O}_L</math>, then <math>N(\mathfrak a\cdot\mathfrak b)=N(\mathfrak a)N(\mathfrak b)</math>.<ref name="Marcus"/> Thus the absolute norm extends uniquely to a group homomorphism
:<math>N\colon\mathcal{I}_{\mathcal{O}_L}\to\mathbb{Q}_{>0}^\times,</math>
defined for all nonzero fractional ideals of <math>\mathcal{O}_L</math>.

The norm of an ideal <math>\mathfrak a</math> can be used to give an upper bound on the field norm of the smallest nonzero element it contains: there always exists a nonzero <math>a\in\mathfrak a</math> for which
:<math>\left|N_{L/\mathbb{Q}}(a)\right|\leq \left ( \frac{2}{\pi}\right )^s \sqrt{\left|\Delta_L\right|}N(\mathfrak a),</math>
where <math>\Delta_L</math> is the [[Discriminant of an algebraic number field|discriminant]] of <math>L</math> and <math>s</math> is the number of pairs of (non-real) complex embeddings of {{math|''L''}} into <math>\mathbb{C}</math> (the number of complex places of {{math|''L''}}).<ref name="Neukirch">{{citation
|first=Jürgen
|last=Neukirch
|title=Algebraic number theory
|title=Algebraic number theory
|publisher=Springer-Verlag
|publisher=Springer-Verlag
|place=Berlin
|place=Berlin
|date=1999
|date=1999
|pages=xviii+571
|isbn=3-540-65399-6
|isbn=3-540-65399-6
|at=Lemma 6.2
|mr=1697859 (2000m:11104)
|mr=1697859 (2000m:11104)
}}
}}</ref>

*{{citation
==See also==
|author=Serre, Jean-Pierre
*[[Field norm]]
|title=Local fields,
*[[Dedekind zeta function]]
|series=Graduate Texts in Mathematics

|volume=67
==References==
|others=Translated from the French by Marvin Jay Greenberg
{{reflist}}
|publisher=Springer-Verlag
|place=New York
|date=1979
|pages=viii+241
|isbn=0-387-90424-7
|mr=554237 (82e:12016)
}}


[[Category:Algebraic number theory]]
[[Category:Algebraic number theory]]

Revision as of 22:34, 7 September 2015

In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.

Relative norm

Let A be a Dedekind domain with field of fractions K and integral closure of B in a finite separable extension L of K. (this implies that B is also a Dedekind domain.) Let and be the ideal groups of A and B, respectively (i.e., the sets of nonzero fractional ideals.) Following the technique developed by Jean-Pierre Serre, the norm map

is the unique group homomorphism that satisfies

for all nonzero prime ideals of B, where is the prime ideal of A lying below .

Alternatively, for any one can equivalently define to be the fractional ideal of A generated by the set of field norms of elements of B.[1]

For , one has , where . The ideal norm of a principal ideal is thus compatible with the field norm of an element: [2]

Let be a Galois extension of number fields with rings of integers . Then the preceding applies with , and for any we have

which is an element of . The notation is sometimes shortened to , an abuse of notation that is compatible with also writing for the field norm, as noted above.

In the case , it is reasonable to use positive rational numbers as the range for since has trivial ideal class group and unit group , thus each nonzero fractional ideal of is generated by a uniquely determined positive rational number. Under this convention the relative norm from down to coincides with the absolute norm defined below.

Absolute norm

Let be a number field with ring of integers , and a nonzero (integral) ideal of . The absolute norm of is

By convention, the norm of the zero ideal is taken to be zero.

If is a principal ideal, then .[3]

The norm is completely multiplicative: if and are ideals of , then .[3] Thus the absolute norm extends uniquely to a group homomorphism

defined for all nonzero fractional ideals of .

The norm of an ideal can be used to give an upper bound on the field norm of the smallest nonzero element it contains: there always exists a nonzero for which

where is the discriminant of and is the number of pairs of (non-real) complex embeddings of L into (the number of complex places of L).[4]

See also

References

  1. ^ Janusz, Gerald J. (1996), Algebraic number fields, Graduate Studies in Mathematics, vol. 7 (second ed.), Providence, Rhode Island: American Mathematical Society, Proposition I.8.2, ISBN 0-8218-0429-4, MR 1362545 (96j:11137) {{citation}}: Check |mr= value (help)
  2. ^ Serre, Jean-Pierre (1979), Local fields, Graduate Texts in Mathematics, vol. 67, Translated from the French by Marvin Jay Greenberg, New York: Springer-Verlag, 1.5, Proposition 14, ISBN 0-387-90424-7, MR 554237 (82e:12016) {{citation}}: Check |mr= value (help)
  3. ^ a b Marcus, Daniel A. (1977), Number fields, Universitext, New York: Springer-Verlag, Theorem 22c, ISBN 0-387-90279-1, MR 0457396 (56 #15601) {{citation}}: Check |mr= value (help)
  4. ^ Neukirch, Jürgen (1999), Algebraic number theory, Berlin: Springer-Verlag, Lemma 6.2, ISBN 3-540-65399-6, MR 1697859 (2000m:11104) {{citation}}: Check |mr= value (help)