Path space fibration: Difference between revisions
TakuyaMurata (talk | contribs) |
TakuyaMurata (talk | contribs) |
||
Line 40: | Line 40: | ||
f(t) & \text{if } 0 \le t \le r \\ |
f(t) & \text{if } 0 \le t \le r \\ |
||
g(t-r) & \text{if } r \le t \le s + r \\ |
g(t-r) & \text{if } r \le t \le s + r \\ |
||
\end{cases}</math>. |
|||
This product is manifestly associative (whenever the products make sense). In particular, with ''μ'' restricted to <math>\Omega' X \times \Omega' X</math>, <math>\Omega' X</math> is a [[topological monoid]] (in the category of all spaces). |
|||
== Notes == |
== Notes == |
Revision as of 05:47, 1 January 2016
In algebraic topology, the path space fibration over a based space (X, *) is a fibration of the form
where
- is the space of all based maps from I to X, with the unit interval I given the base point 0. (It is called the path space of X.)
- is the fiber of over the base point of X; thus it is the loop space of X.
The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration.
Mapping path space
If ƒ:X→Y is any map, then the mapping path space Pƒ of ƒ is the pullback of along ƒ. Since a fibration pullbacks to a fibration, one has the fibration
where and is the homotopy fiber, the pullback of along ƒ.
Note also ƒ is the composition
where the first map φ sends x to , the constant path with value ƒ(x). Clearly, φ is a homotopy equivalence; thus, the above decomposition says that any map is a fibration up to homotopy equivalence.
If ƒ is a fibration to begin with, then is a fiber-homotopy equivalence and, consequently,[1] the fibers of f over the path-component of the base point are homotopy equivalent to the homotopy fiber of ƒ.
Moore's path space
By definition, a path in a space X is a map from the unit interval I to X. Again by definition, the product of two paths α, β such that α(1) = β(0) is the path β · α: I → X given by:
- .
This product, in general, fails to be associative on the nose: (γ · β) · α ≠ γ · (β · α), as seen directly. One solution to this failure is to pass to homotopy classes: one has [(γ · β) · α ] = [γ · (β · α)]. Another solution is to work with paths of varying length, leading to the notion of Moore's path space and Moore's path space fibration.[2]
Given a based space (X, *), we let
An element f of this set has the unique extension to the interval such that . Thus, the set can be identified as a subspace of . The resulting space is called Moore's path space of X. Then, just as before, there is a fibration, Moore's path space fibration:
where p sends each f: [0, r] → X to f(r) and is the fiber. It turns out that and are homotopy equivalent.
Now, we define the product map:
by: for and ,
- .
This product is manifestly associative (whenever the products make sense). In particular, with μ restricted to , is a topological monoid (in the category of all spaces).
Notes
- ^ using the change of fiber
- ^ Whitehead 1979, Ch. III, § 2.
References
- James F. Davis, Paul Kirk, Lecture Notes in Algebraic Topology
- May, J. A Concise Course in Algebraic Topology
- George William Whitehead (1978). Elements of homotopy theory. Graduate Texts in Mathematics. Vol. 61 (3rd ed.). New York-Berlin: Springer-Verlag. pp. xxi+744. ISBN 978-0-387-90336-1. MR 0516508. Retrieved September 6, 2011.