Jump to content

252 (number): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
In mathematics: reformatting, palindromicity, aliquot sum and Harshad number.
Line 10: Line 10:
*a [[practical number]].<ref>{{SloanesRef|A005153|name=Practical numbers}}</ref>
*a [[practical number]].<ref>{{SloanesRef|A005153|name=Practical numbers}}</ref>
*a [[hexagonal pyramidal number]].<ref>{{SloanesRef|A002412|name=Hexagonal pyramidal numbers, or greengrocer's numbers}}</ref>
*a [[hexagonal pyramidal number]].<ref>{{SloanesRef|A002412|name=Hexagonal pyramidal numbers, or greengrocer's numbers}}</ref>
*the [[central binomial coefficient]] <math>\tbinom{10}{5}</math>,<ref>{{SloanesRef|A000984|name=Central binomial coefficients}}</ref>
*the [[central binomial coefficient]] <math>\tbinom{10}{5}</math>,<ref>{{SloanesRef|A000984|name=Central binomial coefficients}}</ref> the largest one divisible by all coefficients in the previous line.
*a member of the [[Mian–Chowla sequence]].
*a [[refactorable number]].
*palindromic in bases 5 (2002<sub>5</sub>), 10 (252<sub>10</sub>), 17 (EE<sub>17</sub>), 20 (CC<sub>20</sub>), 27 (99<sub>27</sub>), 35 (77<sub>35</sub>), 41 (66<sub>41</sub>), 62 (44<sub>62</sub>) and 3 other bases.
*palindromic in bases 5 (2002<sub>5</sub>), 10 (252<sub>10</sub>), 17 (EE<sub>17</sub>), 20 (CC<sub>20</sub>), 27 (99<sub>27</sub>), 35 (77<sub>35</sub>), 41 (66<sub>41</sub>), 62 (44<sub>62</sub>) and 3 other bases.
*a [[Harshad number]] in bases 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15 (and 60 other bases).
*a [[Harshad number]] in bases 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15 (and 60 other bases).

Revision as of 03:28, 7 April 2016

← 251 252 253 →
Cardinaltwo hundred fifty-two
Ordinal252nd
(two hundred fifty-second)
Factorization22 × 32 × 7
Divisors1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252
Greek numeralΣΝΒ´
Roman numeralCCLII, cclii
Binary111111002
Ternary1001003
Senary11006
Octal3748
Duodecimal19012
HexadecimalFC16

252 (two hundred [and] fifty-two) is the natural number following 251 and preceding 253.

In mathematics

252 is:

  • the aliquot sum of 63001.
  • part of the 59-aliquot tree. The aliquot sequence starting at 63001 is: 63001, 252, 476, 532, 588, 1008, 2216, 1954, 980, 1414, 1034, 694, 350, 394, 200, 265, 59, 1, 0.

There are:

  • 252 points on the surface of a cuboctahedron of radius five in the fcc lattice,[6]
  • 252 ways of writing the number 4 as a sum of six squares of integers,[7]
  • 252 ways of choosing four squares from a 4×4 chessboard up to reflections and rotations,[8]
  • 252 ways of placing four pieces on a Connect Four board.[9]

References

  1. ^ Sloane, N. J. A. (ed.). "Sequence A005153 (Practical numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A002412 (Hexagonal pyramidal numbers, or greengrocer's numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A000984 (Central binomial coefficients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A000594 (Ramanujan's tau function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A001158 (sigma_3(n): sum of cubes of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A005901 (Number of points on surface of cuboctahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A000141 (Number of ways of writing n as a sum of 6 squares)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A019318 (Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A090224 (Number of possible positions for n men on a standard 7 X 6 board of Connect-Four)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.