Jump to content

Damascenone: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m CS1 maintenance: vauthors/veditors or enumerate multiple authors/editors; WP:GenFixes on using AWB
DrMcoste (talk | contribs)
No edit summary
Line 67: Line 67:
| url = http://pubs.acs.org/doi/full/10.1021/jf800382m
| url = http://pubs.acs.org/doi/full/10.1021/jf800382m
| doi = 10.1021/jf800382m }}</ref>
| doi = 10.1021/jf800382m }}</ref>

==Biosynthesis==


==See also==
==See also==

Revision as of 00:31, 24 May 2016

beta-Damascenone
Names
IUPAC name
(E)-1-(2,6,6-Trimethyl-1-cyclohexa-1,3-dienyl)but-2-en-1-one
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.041.662 Edit this at Wikidata
  • InChI=1S/C13H18O/c1-5-7-11(14)12-10(2)8-6-9-13(12,3)4/h5-8H,9H2,1-4H3/b7-5+ checkY
    Key: POIARNZEYGURDG-FNORWQNLSA-N checkY
  • InChI=1/C13H18O/c1-5-7-11(14)12-10(2)8-6-9-13(12,3)4/h5-8H,9H2,1-4H3/b7-5+
    Key: POIARNZEYGURDG-FNORWQNLBV
  • O=C(\C1=C(\C=C/CC1(C)C)C)/C=C/C
Properties
C13H18O
Molar mass 190.28 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Damascenones are a series of closely related chemical compounds that are components of a variety of essential oils. The damascenones belong to a family of chemicals known as rose ketones, which also includes damascones and ionones. beta-Damascenone is a major contributor to the aroma of roses, despite its very low concentration, and is an important fragrance chemical used in perfumery.[1]

The damascenones are derived from the degradation of carotenoids.[2]

In 2008, (E)-β-damascenone was identified as a primary odorant in Kentucky Bourbon.[3]

Biosynthesis

See also

References

  1. ^ Rose (Rosa damascena), John C. Leffingwell
  2. ^ Sachihiko Isoe; Shigeo Katsumura; Takeo Sakan (1973). "The Synthesis of Damascenone and beta-Damascone and the possible mechanism of their formation from carotenoids". Helvetica Chimica Acta. 56 (5): 1514–1516. doi:10.1002/hlca.19730560508.
  3. ^ LUIGI POISSON; PETER SCHIEBERLE (2008). "Characterization of the Most Odor-Active Compounds in an American Bourbon Whisky by Application of the Aroma Extract Dilution Analysis". J. Agric. Food Chem. 56 (14): 5813–5819. doi:10.1021/jf800382m.