Ribbon Hopf algebra: Difference between revisions
Appearance
Content deleted Content added
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
A '''Ribbon Hopf algebra''' <math>(A,m,\Delta,u,\varepsilon,\mathcal{R},\nu)</math> is a [[Quasi-triangular Hopf algebra]] |
A '''Ribbon Hopf algebra''' <math>(A,m,\Delta,u,\varepsilon,\Phi,\mathcal{R},\nu)</math> is a [[Quasi-triangular Hopf algebra]] |
||
which possess an invertible central element <math>\nu</math> such that the following conditions hold: |
which possess an invertible central element <math>\nu</math> more commonly known as the ribbon element, such that the following conditions hold: |
||
:<math>\nu^{2}=uS(u), \; S(\nu)=\nu, \; \varepsilon (\nu)=1</math> |
:<math>\nu^{2}=uS(u), \; S(\nu)=\nu, \; \varepsilon (\nu)=1</math> |
||
:<math>\Delta (\nu)=(\mathcal{R}_{21}\mathcal{R}_{12})^{-1}(\nu \otimes \nu )</math> |
:<math>\Delta (\nu)=(\mathcal{R}_{21}\mathcal{R}_{12})^{-1}(\nu \otimes \nu )</math> |
||
such that <math>u=m(S\otimes id)(\mathcal{R}_{21})</math>. |
|||
Where |
|||
:<math> A </math> is a vector space |
|||
:<math> m </math> is the multiplication map <math>m:A \otimes A \rightarrow A</math> |
|||
:<math> \Delta </math> is the co-product map <math>\Delta: A \rightarrow A \otimes A</math> |
|||
:<math> u </math> is the unit operator <math>u:A \rightarrow \mathbb{C}</math> |
|||
:<math> \varepsilon </math> is the co-unit opertor <math>\varepsilon: \mathbb{C} \rightarrow A</math> |
|||
:<math> \Phi </math> is the co-associator isomorphism such that <math> \Phi_{123}= \Phi = a_1 \otimes a_2 \otimes a_3 \in A \otimes A \otimes A</math>. |
|||
:<math>\mathcal{R}</math> is a universal R matrix |
|||
Line 17: | Line 22: | ||
== References == |
== References == |
||
* Altschuler, D., Coste, A.: Quasi-quantum groups, knots, three-manifolds and topological field theory. Commun. Math. Phys. 150 1992 83-107 http://arxiv.org/pdf/hep-th/9202047 |
|||
* Chari, V.C., Pressley, A.: ''A Guide to Quantum Groups'' Cambridge University Press, 1994 ISBN 0-521-55884-0. |
* Chari, V.C., Pressley, A.: ''A Guide to Quantum Groups'' Cambridge University Press, 1994 ISBN 0-521-55884-0. |
||
* [[Vladimir Drinfeld]], ''Quasi-Hopf algebras'', Leningrad Math J. 1 (1989), 1419-1457 |
* [[Vladimir Drinfeld]], ''Quasi-Hopf algebras'', Leningrad Math J. 1 (1989), 1419-1457 |
Revision as of 15:11, 2 September 2006
A Ribbon Hopf algebra is a Quasi-triangular Hopf algebra which possess an invertible central element more commonly known as the ribbon element, such that the following conditions hold:
such that .
Where
- is a vector space
- is the multiplication map
- is the co-product map
- is the unit operator
- is the co-unit opertor
- is the co-associator isomorphism such that .
- is a universal R matrix
See also
References
- Altschuler, D., Coste, A.: Quasi-quantum groups, knots, three-manifolds and topological field theory. Commun. Math. Phys. 150 1992 83-107 http://arxiv.org/pdf/hep-th/9202047
- Chari, V.C., Pressley, A.: A Guide to Quantum Groups Cambridge University Press, 1994 ISBN 0-521-55884-0.
- Vladimir Drinfeld, Quasi-Hopf algebras, Leningrad Math J. 1 (1989), 1419-1457
- Majid, S.: Foundations of Quantum Group Theory Cambridge University Press, 1995