Jump to content

Ribbon Hopf algebra: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 1: Line 1:
A '''Ribbon Hopf algebra''' <math>(A,m,\Delta,u,\varepsilon,\mathcal{R},\nu)</math> is a [[Quasi-triangular Hopf algebra]]
A '''Ribbon Hopf algebra''' <math>(A,m,\Delta,u,\varepsilon,\Phi,\mathcal{R},\nu)</math> is a [[Quasi-triangular Hopf algebra]]
which possess an invertible central element <math>\nu</math> such that the following conditions hold:
which possess an invertible central element <math>\nu</math> more commonly known as the ribbon element, such that the following conditions hold:


:<math>\nu^{2}=uS(u), \; S(\nu)=\nu, \; \varepsilon (\nu)=1</math>
:<math>\nu^{2}=uS(u), \; S(\nu)=\nu, \; \varepsilon (\nu)=1</math>
:<math>\Delta (\nu)=(\mathcal{R}_{21}\mathcal{R}_{12})^{-1}(\nu \otimes \nu )</math>
:<math>\Delta (\nu)=(\mathcal{R}_{21}\mathcal{R}_{12})^{-1}(\nu \otimes \nu )</math>


where <math>u=m(S\otimes id)(\mathcal{R}_{21})</math>
such that <math>u=m(S\otimes id)(\mathcal{R}_{21})</math>.





Where
:<math> A </math> is a vector space
:<math> m </math> is the multiplication map <math>m:A \otimes A \rightarrow A</math>
:<math> \Delta </math> is the co-product map <math>\Delta: A \rightarrow A \otimes A</math>
:<math> u </math> is the unit operator <math>u:A \rightarrow \mathbb{C}</math>
:<math> \varepsilon </math> is the co-unit opertor <math>\varepsilon: \mathbb{C} \rightarrow A</math>
:<math> \Phi </math> is the co-associator isomorphism such that <math> \Phi_{123}= \Phi = a_1 \otimes a_2 \otimes a_3 \in A \otimes A \otimes A</math>.
:<math>\mathcal{R}</math> is a universal R matrix




Line 17: Line 22:


== References ==
== References ==
* Altschuler, D., Coste, A.: Quasi-quantum groups, knots, three-manifolds and topological field theory. Commun. Math. Phys. 150 1992 83-107 http://arxiv.org/pdf/hep-th/9202047
* Chari, V.C., Pressley, A.: ''A Guide to Quantum Groups'' Cambridge University Press, 1994 ISBN 0-521-55884-0.
* Chari, V.C., Pressley, A.: ''A Guide to Quantum Groups'' Cambridge University Press, 1994 ISBN 0-521-55884-0.
* [[Vladimir Drinfeld]], ''Quasi-Hopf algebras'', Leningrad Math J. 1 (1989), 1419-1457
* [[Vladimir Drinfeld]], ''Quasi-Hopf algebras'', Leningrad Math J. 1 (1989), 1419-1457

Revision as of 15:11, 2 September 2006

A Ribbon Hopf algebra is a Quasi-triangular Hopf algebra which possess an invertible central element more commonly known as the ribbon element, such that the following conditions hold:

such that .

Where

is a vector space
is the multiplication map
is the co-product map
is the unit operator
is the co-unit opertor
is the co-associator isomorphism such that .
is a universal R matrix


See also

References

  • Altschuler, D., Coste, A.: Quasi-quantum groups, knots, three-manifolds and topological field theory. Commun. Math. Phys. 150 1992 83-107 http://arxiv.org/pdf/hep-th/9202047
  • Chari, V.C., Pressley, A.: A Guide to Quantum Groups Cambridge University Press, 1994 ISBN 0-521-55884-0.
  • Vladimir Drinfeld, Quasi-Hopf algebras, Leningrad Math J. 1 (1989), 1419-1457
  • Majid, S.: Foundations of Quantum Group Theory Cambridge University Press, 1995