Jump to content

Nebula: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 150.129.120.25 (talk) (HG) (3.1.21)
Formation: Not in the right section and "400 billion light years away" is obviously wrong.
Line 64: Line 64:
==Formation==
==Formation==
[[File:Nursery of New Stars - GPN-2000-000972.jpg|thumb|250px|The Triangulum Emission Garren Nebula [[NGC 604]]]]
[[File:Nursery of New Stars - GPN-2000-000972.jpg|thumb|250px|The Triangulum Emission Garren Nebula [[NGC 604]]]]
Many nebulae or stars form from the [[gravitational collapse]] of gas in the [[interstellar medium]]. As the material collapses under its own weight, massive stars may form in the center, and their [[ultraviolet radiation]] [[ion]]izes the surrounding gas, making it visible at optical [[wavelength]]s. Examples of these types of nebulae are the [[Rosette Nebula]] and the [[Pelican Nebula]]. The size of these nebulae, known as [[H II region]]s, varies depending on the size of the original cloud of gas. New stars are formed in the nebulae. The formed stars are sometimes known as a young, loose cluster. The nearest nebula to the milky way is 400 billion light years away it is 70 million light years in diameter (583 times that of the milky way).
Many nebulae or stars form from the [[gravitational collapse]] of gas in the [[interstellar medium]]. As the material collapses under its own weight, massive stars may form in the center, and their [[ultraviolet radiation]] [[ion]]izes the surrounding gas, making it visible at optical [[wavelength]]s. Examples of these types of nebulae are the [[Rosette Nebula]] and the [[Pelican Nebula]]. The size of these nebulae, known as [[H II region]]s, varies depending on the size of the original cloud of gas. New stars are formed in the nebulae. The formed stars are sometimes known as a young, loose cluster.


Other nebulae form as the result of [[supernova]] explosions; the death throes of massive, short-lived stars. The materials thrown off from the [[supernova]] explosion are then ionized by the energy and the compact object that its core produces. One of the best examples of this is the [[Crab Nebula]], in [[Taurus (constellation)|Taurus]]. The supernova event was recorded in the year 1054 and is labelled [[SN 1054]]. The compact object that was created after the explosion lies in the center of the Crab Nebula and its core is now a [[neutron star]].
Other nebulae form as the result of [[supernova]] explosions; the death throes of massive, short-lived stars. The materials thrown off from the [[supernova]] explosion are then ionized by the energy and the compact object that its core produces. One of the best examples of this is the [[Crab Nebula]], in [[Taurus (constellation)|Taurus]]. The supernova event was recorded in the year 1054 and is labelled [[SN 1054]]. The compact object that was created after the explosion lies in the center of the Crab Nebula and its core is now a [[neutron star]].

Revision as of 12:23, 24 August 2016

The "Pillars of Creation" from the Eagle Nebula. Evidence from the Spitzer Telescope suggests that the pillars may already have been destroyed by a supernova explosion, but the light showing us the destruction will not reach the Earth for another millennium.[1]

A nebula (Latin for "cloud";[2] pl. nebulae, nebulæ, or nebulas) is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Originally, nebula was a name for any diffuse astronomical object, including galaxies beyond the Milky Way. The Andromeda Galaxy, for instance, was once referred to as the Andromeda Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin Hubble and others.

Most nebulae are of vast size, even millions of light years in diameter.[3] Contrary to fictional depictions where starships hide in nebulae as thick as cloud banks, in reality a nebula that is barely visible to the human eye from Earth would appear larger, but no brighter, from close by.[4] The Orion Nebula, the brightest nebula in the sky that occupies a region twice the diameter of the full Moon, can be viewed with the naked eye but was missed by early astronomers.[5] Although denser than the space surrounding them, most nebulae are far less dense than any vacuum created on Earth – a nebular cloud the size of the Earth would have a total mass of only a few kilograms. Many nebulae are visible due to their fluorescence caused by the embedded hot stars, while others are so diffuse they can only be detected with long exposures and special filters. Some nebulae are variably illuminated by T Tauri variable stars. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter, and eventually will become dense enough to form stars. The remaining material is then believed to form planets and other planetary system objects.

Observational history

Portion of the Carina Nebula

Around 150 AD, Claudius Ptolemaeus (Ptolemy) recorded, in books VII-VIII of his Almagest, five stars that appeared nebulous. He also noted a region of nebulosity between the constellations Ursa Major and Leo that was not associated with any star.[6] The first true nebula, as distinct from a star cluster, was mentioned by the Persian astronomer, Abd al-Rahman al-Sufi, in his Book of Fixed Stars (964).[7] He noted "a little cloud" where the Andromeda Galaxy is located.[8] He also cataloged the Omicron Velorum star cluster as a "nebulous star" and other nebulous objects, such as Brocchi's Cluster.[7] The supernova that created the Crab Nebula, the SN 1054, was observed by Arabic and Chinese astronomers in 1054.[9][10]

In 1610, Nicolas-Claude Fabri de Peiresc discovered the Orion Nebula using a telescope. This nebula was also observed by Johann Baptist Cysat in 1618. However, the first detailed study of the Orion Nebula was not performed until 1659 by Christiaan Huygens, who also believed himself to be the first person to discover this nebulosity.[8]

In 1715, Edmund Halley published a list of six nebulae.[11] This number steadily increased during the century, with Jean-Philippe de Cheseaux compiling a list of 20 (including eight not previously known) in 1746. From 1751–53, Nicolas Louis de Lacaille cataloged 42 nebulae from the Cape of Good Hope, most of which were previously unknown. Charles Messier then compiled a catalog of 103 "nebulae" (now called Messier objects, which included what are now known to be galaxies) by 1781; his interest was detecting comets, and these were objects that might be mistaken for them.[12]

The number of nebulae was then greatly expanded by the efforts of William Herschel and his sister Caroline Herschel. Their Catalogue of One Thousand New Nebulae and Clusters of Stars was published in 1786. A second catalog of a thousand was published in 1789 and the third and final catalog of 510 appeared in 1802. During much of their work, William Herschel believed that these nebulae were merely unresolved clusters of stars. In 1790, however, he discovered a star surrounded by nebulosity and concluded that this was a true nebulosity, rather than a more distant cluster.[12]

Beginning in 1864, William Huggins examined the spectra of about 70 nebulae. He found that roughly a third of them had the emission spectrum of a gas. The rest showed a continuous spectrum and thus were thought to consist of a mass of stars.[13][14] A third category was added in 1912 when Vesto Slipher showed that the spectrum of the nebula that surrounded the star Merope matched the spectra of the Pleiades open cluster. Thus the nebula radiates by reflected star light.[15]

About 1922, following the Great Debate, it had become clear that many "nebulae" were in fact galaxies far from our own.

Slipher and Edwin Hubble continued to collect the spectra from many diffuse nebulae, finding 29 that showed emission spectra and 33 that had the continuous spectra of star light.[14] In 1922, Hubble announced that nearly all nebulae are associated with stars, and their illumination comes from star light. He also discovered that the emission spectrum nebulae are nearly always associated with stars having spectral classifications of B1 or hotter (including all O-type main sequence stars), while nebulae with continuous spectra appear with cooler stars.[16] Both Hubble and Henry Norris Russell concluded that the nebulae surrounding the hotter stars are transformed in some manner.[14]

Formation

The Triangulum Emission Garren Nebula NGC 604

Many nebulae or stars form from the gravitational collapse of gas in the interstellar medium. As the material collapses under its own weight, massive stars may form in the center, and their ultraviolet radiation ionizes the surrounding gas, making it visible at optical wavelengths. Examples of these types of nebulae are the Rosette Nebula and the Pelican Nebula. The size of these nebulae, known as H II regions, varies depending on the size of the original cloud of gas. New stars are formed in the nebulae. The formed stars are sometimes known as a young, loose cluster.

Other nebulae form as the result of supernova explosions; the death throes of massive, short-lived stars. The materials thrown off from the supernova explosion are then ionized by the energy and the compact object that its core produces. One of the best examples of this is the Crab Nebula, in Taurus. The supernova event was recorded in the year 1054 and is labelled SN 1054. The compact object that was created after the explosion lies in the center of the Crab Nebula and its core is now a neutron star.

Still other nebulae form as planetary nebulae. This is the final stage of a low-mass star's life, like Earth's Sun. Stars with a mass up to 8–10 solar masses evolve into red giants and slowly lose their outer layers during pulsations in their atmospheres. When a star has lost enough material, its temperature increases and the ultraviolet radiation it emits can ionize the surrounding nebula that it has thrown off. Our Sun will produce a planetary nebula and its core will remain behind in the form of white dwarf.

Types of nebulae

Classical types

Objects named nebulae belong to four major groups. Before their nature was understood, galaxies ("spiral nebulae") and star clusters too distant to be resolved as stars were also classified as nebulae, but no longer are.

Not all cloud-like structures are named nebulae; Herbig–Haro objects are an example.

Diffuse nebulae

The Carina Nebula is a diffuse nebula

Most nebulae can be described as diffuse nebulae, which means that they are extended and contain no well-defined boundaries.[18] Diffuse nebulae can be divided into emission nebula, reflection nebulae and "dark nebulae." In visible light nebulae may be divided into emission nebulae that emit spectral line radiation from excited or ionized gas (mostly ionized hydrogen);[19] they are often called HII regions (the term "HII" refers to ionized hydrogen). Reflection nebulae are visible primarily due to the light they reflect. Reflection nebulae themselves do not emit significant amounts of visible light, but are near stars and reflect light from them.[19] Similar nebulae not illuminated by stars do not exhibit visible radiation, but may be detected as opaque clouds blocking light from luminous objects behind them; they are called "dark nebulae".[19]

Although these nebulae have different visibility at optical wavelengths, they are all bright sources of infrared emission, chiefly from dust within the nebulae.[19]

Planetary nebulae

Four different planetary nebulae

Planetary nebulae form when low-mass asymptotic giant branch stars nova. A star that novas pushes the outer layers of the star's mass outward forming gaseous shells, while leaving behind the star's core in the form of a white dwarf.[19] The hot white dwarf illuminates the expelled gases producing emission nebulae with spectra similar to those of emission nebulae found in star formation regions.[19] Technically they are HII regions, because most hydrogen will be ionized, but they are denser and more compact than the nebulae found in star formation regions.[19] Planetary nebulae were given their name by the first astronomical observers who were initially unable to distinguish them from planets, and who tended to confuse them with planets, which were of more interest to them. Our Sun is expected to spawn a planetary nebula about 12 billion years after its formation.[20]

Protoplanetary nebula

A protoplanetary nebula (PPN) is an astronomical object which is at the short-lived episode during a star's rapid stellar evolution between the late asymptotic giant branch (LAGB) phase and the following planetary nebula (PN) phase.[21] During the AGB phase, the star undergoes mass loss, emitting a circumstellar shell of hydrogen gas. When this phase comes to an end, the star enters the PPN phase.

The PPN is energized by the central star, causing it to emit strong infrared radiation and become a reflection nebula. Collimated stellar winds from the central star shape and shock the shell into an axially symmetric form, while producing a fast moving molecular wind.[22] The exact point when a PPN becomes a planetary nebula (PN) is defined by the temperature of the central star. The PPN phase continues until the central star reaches a temperature of 30,000 K, after which it is hot enough to ionize the surrounding gas.[23]

Supernova remnants

The Crab Nebula, an example of a supernova remnant

A supernova occurs when a high-mass star reaches the end of its life. When nuclear fusion in the core of the star stops, the star collapses. The gas falling inward either rebounds or gets so strongly heated that it expands outwards from the core, thus causing the star to explode.[19] The expanding shell of gas forms a supernova remnant, a special diffuse nebula.[19] Although much of the optical and X-ray emission from supernova remnants originates from ionized gas, a great amount of the radio emission is a form of non-thermal emission called synchrotron emission.[19] This emission originates from high-velocity electrons oscillating within magnetic fields.

Notable named nebulae

Nebula catalogs

See also

References

  1. ^ Famous Space Pillars Feel the Heat of Star's Explosion – Jet Propulsion Laboratory
  2. ^ Nebula, Online Etymology Dictionary
  3. ^ 'Formey, Johann Heinrich Samuel. "Nebula." The Encyclopedia of Diderot & d'Alembert Collaborative Translation Project. Translated by Amanda Oberski. Ann Arbor: Michigan Publishing, University of Michigan Library, 2011. Web. 1 April 2015. <http://hdl.handle.net/2027/spo.did2222.0002.664>. Trans. of "Nébuleux," Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers, vol. 11. Paris, 1765.'
  4. ^ Elizabeth Howell (2013-02-22). "In Reality, Nebulae Offer No Place for Spaceships to Hide". Universe Today.
  5. ^ Roger N. Clark. "Visual astronomy of the deep sky". Cambridge University Press. p. 98.
  6. ^ Kunitzsch, P. (1987), "A Medieval Reference to the Andromeda Nebula" (PDF), ESO Messenger, 49: 42–43, Bibcode:1987Msngr..49...42K, retrieved 2009-10-31
  7. ^ a b Kenneth Glyn Jones (1991). Messier's nebulae and star clusters. Cambridge University Press. p. 1. ISBN 0-521-37079-5.
  8. ^ a b Harrison, T. G. (March 1984). "The Orion Nebula — where in History is it". Quarterly Journal of the Royal Astronomical Society. 25 (1): 70–73. Bibcode:1984QJRAS..25...65H.
  9. ^ Lundmark K. (1921), Suspected New Stars Recorded in the Old Chronicles and Among Recent Meridian Observations'', Publications of the Astronomical Society of the Pacific, v. 33, p.225
  10. ^ Mayall N.U. (1939), The Crab Nebula, a Probable Supernova, Astronomical Society of the Pacific Leaflets, v. 3, p.145
  11. ^ Halley, E. (1714–16). "An account of several nebulae or lucid spots like clouds, lately discovered among the fixt stars by help of the telescope". Philosophical Transactions. XXXIX: 390–2.
  12. ^ a b Hoskin, Michael (2005). "Unfinished Business: William Herschel's Sweeps for Nebulae". British Journal for the History of Science. 43: 305–320. Bibcode:2005HisSc..43..305H.
  13. ^ Watts, William Marshall; Huggins, Sir William; Lady Huggins (1904). An introduction to the study of spectrum analysis. Longmans, Green, and Co. pp. 84–85. Retrieved 2009-10-31.
  14. ^ a b c Struve, Otto (1937). "Recent Progress in the Study of Reflection Nebulae". Popular Astronomy. 45: 9–22. Bibcode:1937PA.....45....9S.
  15. ^ Slipher, V. M. (1912). "On the spectrum of the nebula in the Pleiades". Lowell Observatory Bulletin. 1: 26–27. Bibcode:1912LowOB...2...26S.
  16. ^ Hubble, E. P. (December 1922). "The source of luminosity in galactic nebulae". Astrophysical Journal. 56: 400–438. Bibcode:1922ApJ....56..400H. doi:10.1086/142713.
  17. ^ "A stellar sneezing fit". ESA/Hubble Picture of the Week. Retrieved 16 December 2013.
  18. ^ "The Messier Catalog: Diffuse Nebulae". SEDS. Archived from the original on 1996-12-25. Retrieved 2007-06-12.
  19. ^ a b c d e f g h i j F. H. Shu (1982). The Physical Universe. Mill Valley, California: University Science Books. ISBN 0-935702-05-9.
  20. ^ E. Chaisson; S. McMillan (1995). Astronomy: a beginner's guide to the universe (2nd ed.). Upper Saddle River, New Jersey: Prentice-Hall. ISBN 0-13-733916-X.
  21. ^ R. Sahai; C. Sánchez Contreras; M. Morris (2005). "A Starfish Preplanetary Nebula: IRAS 19024+0044". Astrophysical Journal. 620 (2): 948–960. Bibcode:2005ApJ...620..948S. doi:10.1086/426469.
  22. ^ Davis, C. J.; Smith, M. D.; Gledhill, T. M.; Varricatt, W. P. (2005). "Near-infrared echelle spectroscopy of protoplanetary nebulae: probing the fast wind in H2". Monthly Notices of the Royal Astronomical Society. 360 (1): 104–118. arXiv:astro-ph/0503327. Bibcode:2005MNRAS.360..104D. doi:10.1111/j.1365-2966.2005.09018.x.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ Volk, Kevin M.; Kwok, Sun (July 1, 1989). "Evolution of protoplanetary nebulae". Astrophysical Journal. 342: 345–363. Bibcode:1989ApJ...342..345V. doi:10.1086/167597.