Jump to content

Sub-Gaussian distribution: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 19: Line 19:


== References ==
== References ==
* {{cite article
* {{cite arXiv|first1=Mark |last1=Rudelson|first2=Roman|last2=Vershynin|title=Non-asymptotic theory of random matrices: extreme singular values|eprint=1003.2990|year=2010}} [http://arxiv.org/pdf/1003.2990v2.pdf PDF].
|first1=V.V. |last1=Buldygin
|first2=Yu.V.|last2=Kozachenko
|title=Sub-Gaussian random variables
|year=1980
|journal=Ukranian Math. J.
}}
[http://arxiv.org/pdf/1003.2990v2.pdf PDF].
* {{cite arXiv
|first1=Mark |last1=Rudelson
|first2=Roman|last2=Vershynin
|title=Non-asymptotic theory of random matrices: extreme singular values
|eprint=1003.2990
|year=2010
}}
[http://arxiv.org/pdf/1003.2990v2.pdf PDF].
* {{cite book
* {{cite book
| last1 = Ledoux | first1 = Michel
| last1 = Ledoux | first1 = Michel
Line 27: Line 42:
| publisher = Springer Science & Business Media
| publisher = Springer Science & Business Media
}}
}}




[[Category:Probability distributions]]
[[Category:Probability distributions]]

Revision as of 21:46, 14 September 2016

In probability theory, a sub-Gaussian random variable, is a random variable with strong tail decay property. Formally, is called sub-Gaussian if there are positive constants such that for any  :

The sub-Gaussian random variables with the following norm:

form a Birnbaum–Orlicz space.

Equivalent properties

The following properties are equivalent:

  • is sub-Gaussian
  • -condition: .
  • Laplace transform condition: .
  • Moment condition: .

References

 PDF.
  • Rudelson, Mark; Vershynin, Roman (2010). "Non-asymptotic theory of random matrices: extreme singular values". arXiv:1003.2990.
 PDF.
  • Ledoux, Michel; Talagrand, Michel (2013). Probability in Banach Spaces: isoperimetry and processes. Springer Science & Business Media.