Sub-Gaussian distribution: Difference between revisions
Appearance
Content deleted Content added
No edit summary |
|||
Line 19: | Line 19: | ||
== References == |
== References == |
||
* {{cite article |
|||
* {{cite arXiv|first1=Mark |last1=Rudelson|first2=Roman|last2=Vershynin|title=Non-asymptotic theory of random matrices: extreme singular values|eprint=1003.2990|year=2010}} [http://arxiv.org/pdf/1003.2990v2.pdf PDF]. |
|||
|first1=V.V. |last1=Buldygin |
|||
|first2=Yu.V.|last2=Kozachenko |
|||
|title=Sub-Gaussian random variables |
|||
|year=1980 |
|||
|journal=Ukranian Math. J. |
|||
}} |
|||
[http://arxiv.org/pdf/1003.2990v2.pdf PDF]. |
|||
* {{cite arXiv |
|||
|first1=Mark |last1=Rudelson |
|||
|first2=Roman|last2=Vershynin |
|||
|title=Non-asymptotic theory of random matrices: extreme singular values |
|||
|eprint=1003.2990 |
|||
|year=2010 |
|||
}} |
|||
[http://arxiv.org/pdf/1003.2990v2.pdf PDF]. |
|||
* {{cite book |
* {{cite book |
||
| last1 = Ledoux | first1 = Michel |
| last1 = Ledoux | first1 = Michel |
||
Line 27: | Line 42: | ||
| publisher = Springer Science & Business Media |
| publisher = Springer Science & Business Media |
||
}} |
}} |
||
[[Category:Probability distributions]] |
[[Category:Probability distributions]] |
Revision as of 21:46, 14 September 2016
In probability theory, a sub-Gaussian random variable, is a random variable with strong tail decay property. Formally, is called sub-Gaussian if there are positive constants such that for any :
The sub-Gaussian random variables with the following norm:
form a Birnbaum–Orlicz space.
Equivalent properties
The following properties are equivalent:
- is sub-Gaussian
- -condition: .
- Laplace transform condition: .
- Moment condition: .
References
PDF.
- Rudelson, Mark; Vershynin, Roman (2010). "Non-asymptotic theory of random matrices: extreme singular values". arXiv:1003.2990.
PDF.
- Ledoux, Michel; Talagrand, Michel (2013). Probability in Banach Spaces: isoperimetry and processes. Springer Science & Business Media.