Jump to content

Sub-Gaussian distribution: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 26: Line 26:
|pages=1-25
|pages=1-25
|year=1960
|year=1960
}} [https://www.impan.pl/en/publishing-house/journals-and-series/studia-mathematica/all/19/1/81703/proprietes-locales-des-fonctions-a-series-de-fourier-aleatoires].
}}
* {{cite article
* {{cite article
|first1=V.V. |last1=Buldygin
|first1=V.V. |last1=Buldygin

Revision as of 22:41, 14 September 2016

In probability theory, a sub-Gaussian random variable, is a random variable with strong tail decay property. Formally, is called sub-Gaussian if there are positive constants such that for any  :

The sub-Gaussian random variables with the following norm:

form a Birnbaum–Orlicz space.

Equivalent properties

The following properties are equivalent:

  • is sub-Gaussian
  • -condition: .
  • Laplace transform condition: .
  • Moment condition: .

References

  • Template:Cite article [1].
  • Template:Cite article [2].
  • Ledoux, Michel; Talagrand, Michel (1991). Probability in Banach Spaces. Springer-Verlag.
  • Stromberg, K.R. (1994). Probability for Analysts. Chapman & Hall/CRC.
  • Template:Cite article PDF.
  • Template:Cite article PDF.
  • Rudelson, Mark; Vershynin, Roman (2010). "Non-asymptotic theory of random matrices: extreme singular values". arXiv:1003.2990. PDF.