Sub-Gaussian distribution: Difference between revisions
Appearance
Content deleted Content added
Line 26: | Line 26: | ||
|pages=1-25 |
|pages=1-25 |
||
|year=1960 |
|year=1960 |
||
}} [https://www.impan.pl/en/publishing-house/journals-and-series/studia-mathematica/all/19/1/81703/proprietes-locales-des-fonctions-a-series-de-fourier-aleatoires]. |
|||
}} |
|||
* {{cite article |
* {{cite article |
||
|first1=V.V. |last1=Buldygin |
|first1=V.V. |last1=Buldygin |
Revision as of 22:41, 14 September 2016
In probability theory, a sub-Gaussian random variable, is a random variable with strong tail decay property. Formally, is called sub-Gaussian if there are positive constants such that for any :
The sub-Gaussian random variables with the following norm:
form a Birnbaum–Orlicz space.
Equivalent properties
The following properties are equivalent:
- is sub-Gaussian
- -condition: .
- Laplace transform condition: .
- Moment condition: .
References
- Template:Cite article [1].
- Template:Cite article [2].
- Ledoux, Michel; Talagrand, Michel (1991). Probability in Banach Spaces. Springer-Verlag.
- Stromberg, K.R. (1994). Probability for Analysts. Chapman & Hall/CRC.
- Template:Cite article PDF.
- Template:Cite article PDF.
- Rudelson, Mark; Vershynin, Roman (2010). "Non-asymptotic theory of random matrices: extreme singular values". arXiv:1003.2990. PDF.