Jump to content

Bond dipole moment: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Undid revision 696756728 by 198.84.180.106 (talk) rv unexplained removal
Line 1: Line 1:
[[Image:Polarity boron trifluoride.png|thumb|250px|A diagram showing the bond dipole moments of [[boron trifluoride]]. δ- shows an increase in negative charge and δ+ shows an increase in positive charge. Note that the dipole moments drawn in this diagram should be from δ- to δ+ as discussed in text.]]
[[Image:Polarity boron trifluoride.png|thumb|250px|A diagram showing the bond dipole moments of [[boron trifluoride]]. δ- shows an increase in negative charge and δ+ shows an increase in positive charge. Note that the dipole moments drawn in this diagram should be from δ- to δ+ as discussed in text.]]
The '''bond dipole ''' uses the idea of [[electric dipole moment]] to measure the [[chemical polarity|polarity]] of a chemical bond within a [[molecule]]. It occurs whenever there is a separation of positive and negative charges. The bond dipole μ is given by:
The '''bond dipole moment''' uses the idea of [[electric dipole moment]] to measure the [[chemical polarity|polarity]] of a chemical bond within a [[molecule]]. It occurs whenever there is a separation of positive and negative charges. The bond dipole μ is given by:


:<math>\mu = \delta \, d</math>.
:<math>\mu = \delta \, d</math>.

Revision as of 20:20, 20 November 2016

A diagram showing the bond dipole moments of boron trifluoride. δ- shows an increase in negative charge and δ+ shows an increase in positive charge. Note that the dipole moments drawn in this diagram should be from δ- to δ+ as discussed in text.

The bond dipole moment uses the idea of electric dipole moment to measure the polarity of a chemical bond within a molecule. It occurs whenever there is a separation of positive and negative charges. The bond dipole μ is given by:

.

The bond dipole is modeled as +δ — δ- with a distance d between the partial charges +δ and δ-. It is a vector, parallel to the bond axis, pointing from minus to plus, as is conventional[1] for electric dipole moment vectors. (Some chemists draw the vector pointing from plus to minus, but only in situations where the direction is not important.)[1] This vector can be physically interpreted as the movement undergone by electrons when the two atoms are placed a distance d apart and allowed to interact, the electrons will move from their free state positions to be localised more around the more electronegative atom.

The SI unit for electric dipole moment is the coulomb-meter. This is too large to be practical on the molecular scale. Bond dipole moments are commonly measured in debyes, represented by the symbol D, which is obtained by measuring the charge in units of 10−10 statcoulomb and the distance d in Angstroms. Note that 10−10 statcoulomb is 0.208 units of elementary charge, so 1.0 debye results from an electron and a proton separated by 0.208 Angstrom. Another useful conversion factor is 1 C m = 2.9979×1029 D.

For diatomic molecules there is only one (single or multiple) bond so the bond dipole moment is the molecular dipole moment, with typical values in the range of 0 to 11 D. At one extreme, a symmetrical molecule such as chlorine, Cl
2
, has zero dipole moment, while near the other extreme, gas phase potassium bromide, KBr, which is highly ionic, has a dipole moment of 10.5 D.[2]

For polyatomic molecules there is more than one bond, and the total molecular dipole moment may be approximated as the vector sum of individual bond dipole moments. Often bond dipoles are obtained by the reverse process: a known total dipole of a molecule can be decomposed into bond dipoles. This is done to transfer bond dipole moments to molecules that have the same bonds, but for which the total dipole moment is not yet known. The vector sum of the transferred bond dipoles gives an estimate for the total (unknown) dipole of the molecule.

See also

References

  1. ^ a b The Electric Dipole Moment Vector : Direction,Magnitude, Meaning, Etc.
  2. ^ Physical chemistry 2d Edition (1966) G.M. Barrow McGraw Hill