Nucleic acid hybridization: Difference between revisions
m →Fluorescence In Situ Hybridization: Journal cites, added 1 PMC using AWB (12156) |
No edit summary |
||
Line 2: | Line 2: | ||
In molecular biology, '''hybridization''' (or '''hybridisation''') is a phenomenon in which single-stranded deoxyribonucleic acid ([[DNA]]) or ribonucleic acid ([[RNA]]) molecules [[Nucleic acid thermodynamics#Annealing|anneal]] to [[Complementarity (molecular biology)|complementary DNA or RNA]].<ref>{{cite journal|last1=Felsenfeld|first1=G|last2=Miles|first2=HT|title=The physical and chemical properties of nucleic acids.|journal=Annual Review of Biochemistry|date=1967|volume=36|pages=407–48|pmid=18257727|doi=10.1146/annurev.bi.36.070167.002203}}</ref> Though a double-stranded DNA sequence is generally stable under physiological conditions, changing these conditions in the laboratory (generally by raising the surrounding temperature) will cause the molecules to separate into single strands. These strands are complementary to each other but may also be complementary to other sequences present in their surroundings. Lowering the surrounding temperature allows the single-stranded molecules to anneal or “hybridize” to each other. |
In molecular biology, '''hybridization''' (or '''hybridisation''') is a phenomenon in which single-stranded deoxyribonucleic acid ([[DNA]]) or ribonucleic acid ([[RNA]]) molecules [[Nucleic acid thermodynamics#Annealing|anneal]] to [[Complementarity (molecular biology)|complementary DNA or RNA]].<ref>{{cite journal|last1=Felsenfeld|first1=G|last2=Miles|first2=HT|title=The physical and chemical properties of nucleic acids.|journal=Annual Review of Biochemistry|date=1967|volume=36|pages=407–48|pmid=18257727|doi=10.1146/annurev.bi.36.070167.002203}}</ref> Though a double-stranded DNA sequence is generally stable under physiological conditions, changing these conditions in the laboratory (generally by raising the surrounding temperature) will cause the molecules to separate into single strands. These strands are complementary to each other but may also be complementary to other sequences present in their surroundings. Lowering the surrounding temperature allows the single-stranded molecules to anneal or “hybridize” to each other. |
||
[[DNA replication]] and [[Transcription (genetics)|transcription]] of DNA into RNA both rely upon nucleotide hybridization, as do molecular biology techniques including [[Southern blot]]s and [[Northern blot]]s,<ref> |
[[DNA replication]] and [[Transcription (genetics)|transcription]] of DNA into RNA both rely upon nucleotide hybridization, as do molecular biology techniques including [[Southern blot]]s and [[Northern blot]]s,<ref>{{cite web|last1=McClean|first1=Phillip|title=Nucleic Acid Hybirdizations|url=https://www.ndsu.edu/pubweb/~mcclean/plsc731/dna/dna6.htm|website=DNA - Basics of Structure and Analysis|accessdate=26 May 2017}}</ref> the [[polymerase chain reaction]] (PCR), and most approaches to [[DNA sequencing]]. |
||
==Applications== |
==Applications== |
||
Hybridization is a basic property of nucleotide sequences and is taken advantage of in numerous molecular biology techniques. Overall genetic relatedness of two species can be determined by hybridizing segments of their DNA ([[DNA-DNA hybridization]]). Due to sequence similarity between closely related organisms, higher temperatures are required to melt such DNA hybrids when compared to more distantly related organisms. A variety of different methods use hybridization to pinpoint the origin of a DNA sample, including the [[polymerase chain reaction]] (PCR). In another technique, short DNA sequences are hybridized to cellular mRNAs to identify expressed genes. Pharmaceutical drug companies are exploring the use of antisense RNA to bind to undesired mRNA, preventing the ribosome from translating the mRNA into protein.<ref>http://www.biologyreference.com/Ho-La/Hybridization.html</ref> |
Hybridization is a basic property of nucleotide sequences and is taken advantage of in numerous molecular biology techniques. Overall genetic relatedness of two species can be determined by hybridizing segments of their DNA ([[DNA-DNA hybridization]]). Due to sequence similarity between closely related organisms, higher temperatures are required to melt such DNA hybrids when compared to more distantly related organisms. A variety of different methods use hybridization to pinpoint the origin of a DNA sample, including the [[polymerase chain reaction]] (PCR). In another technique, short DNA sequences are hybridized to cellular mRNAs to identify expressed genes. Pharmaceutical drug companies are exploring the use of antisense RNA to bind to undesired mRNA, preventing the ribosome from translating the mRNA into protein.<ref>{{cite web|last1=Beckman|first1=Mary|title=Hybirdization|url=http://www.biologyreference.com/Ho-La/Hybridization.html|accessdate=26 May 2017}}</ref> |
||
===DNA-DNA hybridization=== |
===DNA-DNA hybridization=== |
||
{{Details|DNA-DNA hybridization}} |
{{Details|DNA-DNA hybridization}} |
Revision as of 16:05, 26 May 2017
This article needs additional citations for verification. (February 2015) |
In molecular biology, hybridization (or hybridisation) is a phenomenon in which single-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) molecules anneal to complementary DNA or RNA.[1] Though a double-stranded DNA sequence is generally stable under physiological conditions, changing these conditions in the laboratory (generally by raising the surrounding temperature) will cause the molecules to separate into single strands. These strands are complementary to each other but may also be complementary to other sequences present in their surroundings. Lowering the surrounding temperature allows the single-stranded molecules to anneal or “hybridize” to each other.
DNA replication and transcription of DNA into RNA both rely upon nucleotide hybridization, as do molecular biology techniques including Southern blots and Northern blots,[2] the polymerase chain reaction (PCR), and most approaches to DNA sequencing.
Applications
Hybridization is a basic property of nucleotide sequences and is taken advantage of in numerous molecular biology techniques. Overall genetic relatedness of two species can be determined by hybridizing segments of their DNA (DNA-DNA hybridization). Due to sequence similarity between closely related organisms, higher temperatures are required to melt such DNA hybrids when compared to more distantly related organisms. A variety of different methods use hybridization to pinpoint the origin of a DNA sample, including the polymerase chain reaction (PCR). In another technique, short DNA sequences are hybridized to cellular mRNAs to identify expressed genes. Pharmaceutical drug companies are exploring the use of antisense RNA to bind to undesired mRNA, preventing the ribosome from translating the mRNA into protein.[3]
DNA-DNA hybridization
Fluorescence In Situ Hybridization
Fluorescence in situ hybridization (FISH) is a laboratory method used to detect and locate a DNA sequence, often on a particular chromosome.[4]
Researchers Joseph Gall and Mary Lou Pardue realized in the 1960s that molecular hybridization could be used to identify the position of DNA sequences in situ (i.e., in their natural positions within a chromosome). In 1969, the two scientists published a paper demonstrating that radioactive copies of a ribosomal DNA sequence could be used to detect complementary DNA sequences in the nucleus of a frog egg.[5] Since those original observations, many refinements have increased the versatility and sensitivity of the procedure to the extent that in situ hybridization is now considered an essential tool in cytogenetics.
References
- ^ Felsenfeld, G; Miles, HT (1967). "The physical and chemical properties of nucleic acids". Annual Review of Biochemistry. 36: 407–48. doi:10.1146/annurev.bi.36.070167.002203. PMID 18257727.
- ^ McClean, Phillip. "Nucleic Acid Hybirdizations". DNA - Basics of Structure and Analysis. Retrieved 26 May 2017.
- ^ Beckman, Mary. "Hybirdization". Retrieved 26 May 2017.
- ^ Levsky, JM; Singer, RH (15 July 2003). "Fluorescence in situ hybridization: past, present and future". Journal of Cell Science. 116 (Pt 14): 2833–8. doi:10.1242/jcs.00633. PMID 12808017.
- ^ Pardue, ML; Gall, JG (October 1969). "Molecular hybridization of radioactive DNA to the DNA of cytological preparations". Proceedings of the National Academy of Sciences of the United States of America. 64 (2): 600–4. doi:10.1073/pnas.64.2.600. PMC 223386. PMID 5261036.