Jump to content

LRRC8D: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Remove orphan tag. Incoming link
Added more recent references to studies on this gene.
Line 1: Line 1:
{{Underlinked|date=June 2016}}
{{Infobox_gene}}
{{Infobox_gene}}

'''Leucine-rich repeat-containing protein 8D''' is a [[protein]] that in humans is encoded by the ''LRRC8D'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: LRRC8D leucine rich repeat containing 8 family, member D| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55144| accessdate = }}</ref>
'''Leucine-rich repeat-containing protein 8D''' is a [[protein]] that in humans is encoded by the ''LRRC8D'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: LRRC8A leucine rich repeat containing 8 family, member A| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=56262| accessdate = }}</ref> Researchers have found out that this protein, along with the other LRRC8 proteins [[LRRC8A]], [[LRRC8B]], [[LRRC8C]], and [[LRRC8E]], is a subunit of the heteromer protein [[VRAC|Volume-Regulated Anion Channel]]. <ref name=":6">{{cite journal |title=Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC.|journal=Science |date=2014-05-09 |volume=344 |issue=6184 |doi=10.1126/science.1252826 |first1=Felizia |last1=Voss |first2=Florian |last2 =Ullrich |first3=Jonas |last3=Münch| pmid=24790029}}</ref> Volume-Regulated Anion Channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane,<ref name =":1">{{cite journal |title= VRACs and other ion channels and transporters in the regulation of cell volume and beyond |url= https://exlibris.colgate.edu:2231/pubmed/?term=VRACs%20and%20other%20ion%20channels%20and%20transporters%20in%20the%20regulation%20of%20cell%20volume%20and%20beyond |journal=Nature Reviews Molecular Cell Biology |date=2016-05-17 |issn=1471-0072 |pmid=27033257 |pages=293–3017 |volume=17 |issue=2 |doi= 10.1038/nrm.2016.29 |first=Thomas J. |last=Jentsch}}</ref> and that is not the only function these channels have been linked to.

While LRRC8D is one of many proteins that can be part of VRAC, research has found that it is in fact one of the most crucial subunits for the channel’s ability to function; the other protein of importance is [[LRRC8A]]. <ref name =":2">{{cite journal |title= LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes. |url= https://www.ncbi.nlm.nih.gov/pubmed/25172945|journal = Physiology |date=2014-11-15 | |pmid=PMC4259531 |doi= 10.1113/jphysiol.2014.278887 |first=María C |last= Hyzinski-García | first2= Alena | last2= Rudkouskaya | first3= Alexander | last3= Mongin}}</ref> <ref name =":4">{{cite journal |title= Leucine-rich repeat containing protein LRRC8A is essential for swelling-activated Cl- currents and embryonic development in zebrafish.|url= https://www.ncbi.nlm.nih.gov/pubmed/27688432 |journal = Physiology Reports |date=2016-10-4 | |pmid=PMC5064130 |doi= 10.14814/phy2.12940 |first=Toshiki |last= Yamada | first2= Robert | last2= Wondergem | first3= Rebecca | last3= Morrison}}</ref> However, while we know it is necessary for specific VRAC function, other studies have found that it is not sufficient for the full range of usual VRAC activity. <ref name =":3">{{cite journal |title= Specific and essential but not sufficient roles of LRRC8A in the activity of volume-sensitive outwardly rectifying anion channel (VSOR). |url= https://www.ncbi.nlm.nih.gov/pubmed/27764579 |journal = Channels |date=2016-10-20 | |pmid=27764579 |doi= 10.1080/19336950.2016.1247133 |first=T |last= Okada | first2= MR | last2= Islam | first3= NA | last3= Tsiferova}}</ref> This is where the other LRRC8 proteins come in, as the different composition of these subunits affects the range of specificity for VRACs. <ref name =":5">{{cite journal |title= Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels.. |url= https://www.ncbi.nlm.nih.gov/pubmed/28193731 |journal = Cell Science |date=2017-03-15 | |pmid=28193731 |doi= 10.1242/jcs.196253|first=D |last= Lutter | first2= F | last2=Ullrich | first3= JC | last3= Lueck}}</ref> <ref name=":7">{{cite journal |title=Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt‐based anti‐cancer drugs |journal=EMBO Journal |date=2015-12-14 |volume=34 |issue=24 |doi=10.15252/embj.201592409 |first1=Rosa |last1=Planells‐Cases |first2=Darius |last2 =Lutter |first3=Charlotte |last3=Guyader| pmid=PMC4687416}}</ref>

In addition to its role in VRACs, the LRRC8 protein family is also associated with [[agammaglobulinemia]]-5. <ref name=":8">{{cite journal |title=A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. |journal=Clinical Investigation |date=2003-12 |doi=10.1172/JCI18937 |first1=A |last1=Sawada |first2=Y |last2 =Takihara |first3=JY |last3=Kim| pmid= 14660746 }}</ref>

<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
Line 15: Line 20:
{{PBB_Further_reading
{{PBB_Further_reading
| citations =
| citations =
*{{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
*{{cite journal |vauthors=Jentsch Thomas J |title= VRACs and other ion channels and transporters in the regulation of cell volume and beyond |journal= Nature Reviews Molecular Cell Biology |volume=17 |issue= 2 |year= 2016 |pmid= 27033257 |doi=10.1038/nrm.2016.29}}
*{{cite journal |vauthors=Eggermont D, Trouet I, Carton I, etal |title= Cellular function and control of volume-regulated anion channels |journal= Cell Biochemistry and Biophysics |volume=35 |issue= 3 |year= 2001 |pmid= 11894846}}
*{{cite journal |vauthors=Mongin Alexander|title= Volume-regulated anion channel – a frenemy within the brain |journal= Pflugers Archive |year= 2016 |pmid= PMC4752865 |doi=10.1007/s00424-015-1765-6}}
*{{cite journal |vauthors=Nagase T, Kikuno R, Ishikawa KI, etal |title=Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro. |journal=DNA Res. |volume=7 |issue= 1 |pages= 65–73 |year= 2000 |pmid= 10718198 |doi=10.1093/dnares/7.1.65 }}
*{{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8}}
*{{cite journal |vauthors=Andersson B, Wentland MA, Ricafrente JY, etal |title=A "double adaptor" method for improved shotgun library construction. |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107–13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }}
*{{cite journal |vauthors=Andersson B, Wentland MA, Ricafrente JY, etal |title=A "double adaptor" method for improved shotgun library construction. |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107–13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }}
*{{cite journal |vauthors=Yu W, Andersson B, Worley KC, etal |title=Large-scale concatenation cDNA sequencing. |journal=Genome Res. |volume=7 |issue= 4 |pages= 353–8 |year= 1997 |pmid= 9110174 |doi= 10.1101/gr.7.4.353| pmc=139146 }}
*{{cite journal |vauthors=Yu W, Andersson B, Worley KC, etal |title=Large-scale concatenation cDNA sequencing. |journal=Genome Res. |volume=7 |issue= 4 |pages= 353–8 |year= 1997 |pmid= 9110174 |doi= 10.1101/gr.7.4.353| pmc=139146 }}
*{{cite journal |vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, etal |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }}
*{{cite journal |vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, etal |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }}
*{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal |vauthors=Clark HF, Gurney AL, Abaya E, etal |title=The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. |journal=Genome Res. |volume=13 |issue= 10 |pages= 2265–70 |year= 2003 |pmid= 12975309 |doi= 10.1101/gr.1293003 | pmc=403697 }}
*{{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal |vauthors=Kubota K, Kim JY, Sawada A, etal |title=LRRC8 involved in B cell development belongs to a novel family of leucine-rich repeat proteins. |journal=FEBS Lett. |volume=564 |issue= 1-2 |pages= 147–52 |year= 2004 |pmid= 15094057 |doi= 10.1016/S0014-5793(04)00332-1 }}
*{{cite journal | vauthors=Lehner B, Sanderson CM |title=A protein interaction framework for human mRNA degradation. |journal=Genome Res. |volume=14 |issue= 7 |pages= 1315–23 |year= 2004 |pmid= 15231747 |doi= 10.1101/gr.2122004 | pmc=442147 }}
*{{cite journal | vauthors=Lehner B, Sanderson CM |title=A protein interaction framework for human mRNA degradation. |journal=Genome Res. |volume=14 |issue= 7 |pages= 1315–23 |year= 2004 |pmid= 15231747 |doi= 10.1101/gr.2122004 | pmc=442147 }}
*{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
*{{cite journal |vauthors=Rual JF, Venkatesan K, Hao T, etal |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
*{{cite journal |vauthors=Rual JF, Venkatesan K, Hao T, etal |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
*{{cite journal |vauthors=Gregory SG, Barlow KF, McLay KE, etal |title=The DNA sequence and biological annotation of human chromosome 1. |journal=Nature |volume=441 |issue= 7091 |pages= 315–21 |year= 2006 |pmid= 16710414 |doi= 10.1038/nature04727 }}
*{{cite journal |vauthors=Gregory SG, Barlow KF, McLay KE, etal |title=The DNA sequence and biological annotation of human chromosome 1. |journal=Nature |volume=441 |issue= 7091 |pages= 315–21 |year= 2006 |pmid= 16710414 |doi= 10.1038/nature04727 }}
*{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal |vauthors=Clark HF, Gurney AL, Abaya E, etal |title=The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment |journal=Genome Res. |volume=13 |issue= 10 |pages= 2265–70 |year= 2003 |pmid= 12975309 |doi= 10.1101/gr.1293003 | pmc=403697 }}
*{{cite journal |vauthors=Sawada A, Takihara Y, Kim JY, etal |title=A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans |journal=J. Clin. Invest. |volume=112 |issue= 11 |pages= 1707–13 |year= 2004 |pmid= 14660746 |doi= 10.1172/JCI18937 | pmc=281644 }}
*{{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal |vauthors=Kubota K, Kim JY, Sawada A, etal |title=LRRC8 involved in B cell development belongs to a novel family of leucine-rich repeat proteins |journal=FEBS Lett. |volume=564 |issue= 1–2 |pages= 147–52 |year= 2004 |pmid= 15094057 |doi= 10.1016/S0014-5793(04)00332-1 }}
*{{cite journal |vauthors=Humphray SJ, Oliver K, Hunt AR, etal |title=DNA sequence and analysis of human chromosome 9 |journal=Nature |volume=429 |issue= 6990 |pages= 369–74 |year= 2004 |pmid= 15164053 |doi= 10.1038/nature02465 | pmc=2734081 }}
*{{cite journal | vauthors=Smits G, Kajava AV |title=LRRC8 extracellular domain is composed of 17 leucine-rich repeats |journal=Mol. Immunol. |volume=41 |issue= 5 |pages= 561–2 |year= 2004 |pmid= 15183935 |doi= 10.1016/j.molimm.2004.04.001 }}
*{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
*{{cite journal |vauthors=Otsuki T, Ota T, Nishikawa T, etal |title=Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries |journal=DNA Res. |volume=12 |issue= 2 |pages= 117–26 |year= 2007 |pmid= 16303743 |doi= 10.1093/dnares/12.2.117 }}
*{{cite journal |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 }}
}}
}}
{{refend}}
{{refend}}

Revision as of 18:41, 26 July 2017

LRRC8D
Identifiers
AliasesLRRC8D, LRRC5, leucine-rich repeat containing 8 family member D, leucine rich repeat containing 8 family member D, leucine rich repeat containing 8 VRAC subunit D, HsLRRC8D
External IDsOMIM: 612890; MGI: 1922368; HomoloGene: 10004; GeneCards: LRRC8D; OMA:LRRC8D - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001134479
NM_018103

NM_001122768
NM_178701

RefSeq (protein)

NP_001127951
NP_060573

NP_001116240
NP_848816

Location (UCSC)Chr 1: 89.82 – 89.94 MbChr 5: 105.85 – 105.98 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Leucine-rich repeat-containing protein 8D is a protein that in humans is encoded by the LRRC8D gene.[5] Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8A, LRRC8B, LRRC8C, and LRRC8E, is a subunit of the heteromer protein Volume-Regulated Anion Channel. [6] Volume-Regulated Anion Channels (VRACs) are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane,[7] and that is not the only function these channels have been linked to.

While LRRC8D is one of many proteins that can be part of VRAC, research has found that it is in fact one of the most crucial subunits for the channel’s ability to function; the other protein of importance is LRRC8A. [8] [9] However, while we know it is necessary for specific VRAC function, other studies have found that it is not sufficient for the full range of usual VRAC activity. [10] This is where the other LRRC8 proteins come in, as the different composition of these subunits affects the range of specificity for VRACs. [11] [12]

In addition to its role in VRACs, the LRRC8 protein family is also associated with agammaglobulinemia-5. [13]

Template:PBB Summary

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000171492Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000046079Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: LRRC8A leucine rich repeat containing 8 family, member A".
  6. ^ Voss, Felizia; Ullrich, Florian; Münch, Jonas (2014-05-09). "Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC". Science. 344 (6184). doi:10.1126/science.1252826. PMID 24790029.
  7. ^ Jentsch, Thomas J. (2016-05-17). "VRACs and other ion channels and transporters in the regulation of cell volume and beyond". Nature Reviews Molecular Cell Biology. 17 (2): 293–3017. doi:10.1038/nrm.2016.29. ISSN 1471-0072. PMID 27033257.
  8. ^ Hyzinski-García, María C; Rudkouskaya, Alena; Mongin, Alexander (2014-11-15). "LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes". Physiology. doi:10.1113/jphysiol.2014.278887. PMID PMC4259531. {{cite journal}}: Check |pmid= value (help); Cite has empty unknown parameter: |1= (help)
  9. ^ Yamada, Toshiki; Wondergem, Robert; Morrison, Rebecca (2016-10-4). "Leucine-rich repeat containing protein LRRC8A is essential for swelling-activated Cl- currents and embryonic development in zebrafish". Physiology Reports. doi:10.14814/phy2.12940. PMID PMC5064130. {{cite journal}}: Check |pmid= value (help); Check date values in: |date= (help); Cite has empty unknown parameter: |1= (help)
  10. ^ Okada, T; Islam, MR; Tsiferova, NA (2016-10-20). "Specific and essential but not sufficient roles of LRRC8A in the activity of volume-sensitive outwardly rectifying anion channel (VSOR)". Channels. doi:10.1080/19336950.2016.1247133. PMID 27764579. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  11. ^ Lutter, D; Ullrich, F; Lueck, JC (2017-03-15). "Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels." Cell Science. doi:10.1242/jcs.196253. PMID 28193731. {{cite journal}}: Cite has empty unknown parameter: |1= (help)
  12. ^ Planells‐Cases, Rosa; Lutter, Darius; Guyader, Charlotte (2015-12-14). "Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt‐based anti‐cancer drugs". EMBO Journal. 34 (24). doi:10.15252/embj.201592409. PMID PMC4687416. {{cite journal}}: Check |pmid= value (help)
  13. ^ Sawada, A; Takihara, Y; Kim, JY (2003-12). "A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans". Clinical Investigation. doi:10.1172/JCI18937. PMID 14660746. {{cite journal}}: Check date values in: |date= (help)

Further reading

Template:PBB Controls