User:Tomruen/Coxeter foldings: Difference between revisions
Appearance
Content deleted Content added
Line 182: | Line 182: | ||
|+ Example: D<sub>4</sub>, {{CDD|node|3|node|split1|nodes}} |
|+ Example: D<sub>4</sub>, {{CDD|node|3|node|split1|nodes}} |
||
!colspan=3|Folding||Degree||Coxeter Plane |
!colspan=3|Folding||Degree||Coxeter Plane |
||
|- align=center |
|||
| || ||{{CDD|node_c1|8|node_c2}} || 8||B<sub>4</sub> |
|||
|- align=center BGCOLOR="#e0e0ff" |
|- align=center BGCOLOR="#e0e0ff" |
||
|{{CDD|node_c1|4|node_c2|split1|nodeab_c1}} || ||{{CDD|node_c1|6|node_c2}} || 6||D<sub>4</sub>=B<sub>3</sub> |
|{{CDD|node_c1|4|node_c2|split1|nodeab_c1}} || ||{{CDD|node_c1|6|node_c2}} || 6||D<sub>4</sub>=B<sub>3</sub> |
Revision as of 21:37, 29 October 2017
Coxeter group |
Coxeter diagram |
Degrees | Coxeter planes |
---|---|---|---|
A2 | 2, 3 | A1, A2 | |
B2 | 2, 4 | A1, B2 | |
H2 | 2, 5 | A1, H2 | |
A3 | 2, 3, 4 | A1, A2, A3 | |
B3 | 2, 4, 6 | A1, B2, A2=B3 | |
H3 | 2, 6, 10 | A1, A2, H2=H3 | |
A4 | 2, 3, 4, 5 | A1, A2, A3, A4 | |
B4 | 2, 4, 6, 8 | A1, A3, B2, A2=B3, B4 | |
D4 | 2, 4, 6 | A1, A3, A2=D4 | |
F4 | 2, 6, 8, 12 | A1, A3=B2, A2=B3, F4 | |
H4 | 2, 12, 20, 30 | A1, A2, A3, H2=H3, H4 | |
A5 | 2, 3, 4, 5, 6 | A1, A2, A3, A4, A5 | |
B5 | 2, 4, 6, 8, 10 | A1, A3=B2, A2=B3, B4, A4=B5 | |
D5 | 5; 2, 4, 6, 8 | ||
A6 | 2, 3, 4, 5, 6, 7 | A1, A2, A3, A4, A5, A6 | |
B6 | 2, 4, 6, 8, 10, 12 | A1, A3=B2, A2=B3, B4, A4=B5, B6 | |
D6 | 2, 4, 6, 8, 10 | ||
E6 | 2, 5, 6, 8, 9, 12 | ||
E7 | 2, 6, 8, 10, 12, 14, 18 | ||
E8 | 2, 8, 12, 14, 18, 20, 24, 30 |
I'm curious to Coxeter–Dynkin_diagram#Geometric_foldings expressing Coxeter numbers and all degrees of fundamental invariants. Foldings are shown by marking node with colors, red and blue, which map to node 1 or 2 in the rank 2 folded group.
A3
Folding | Degree | Coxeter Plane | |
---|---|---|---|
4 | A3 | ||
3 | A2 | ||
2 | A1 |
B3
Folding | Degree | Coxeter Plane | |
---|---|---|---|
6 | B3 | ||
3×2 | A2 | ||
4 | B2 | ||
2 | A1 |
H3
Folding | Degree | Coxeter Plane | |
---|---|---|---|
10 | H3 | ||
5×2 | H2 | ||
3×2 | A2 | ||
2 | A1 |
A4
Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
5 | A4 | |||
4 | A3 | |||
3 | A2 | |||
2 | A1 |
B4
Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
8 | B4 | |||
6 | B3 | |||
3×2 | A2 | |||
4 | A3 | |||
4 | B2 | |||
2 | A1 |
D4
Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
6 | D4=B3 | |||
3×2 | A2 | |||
4 | A3=D3 | |||
4 | B2 | |||
2 | A1 |
F4
Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
12 | F4 | |||
6 | B3 | |||
3×2 | A2 | |||
4 | A3 | |||
4 | B2 | |||
2 | A1 |
H4
Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
30 | H4 | |||
20 | ||||
12 | F4 | |||
10 | H3 | |||
5×2 | H2 | |||
3×2 | A2 | |||
4 | A3 | |||
2 | A1 |
A5
Folding | Degree | Coxeter Plane | ||
---|---|---|---|---|
6 | A5 | |||
5 | A4 | |||
4 | A3 | |||
3 | A2 | |||
2 | A1 |