Continuous Hahn polynomials: Difference between revisions
Corrected signs in gamma functions |
m Cleanup on previous edit |
||
Line 8: | Line 8: | ||
==Orthogonality== |
==Orthogonality== |
||
The continuous Hahn polynomials ''p''<sub>''n''</sub>(''x'';''a'',''b'',''c'',''d'') are orthogonal with respect to the weight function |
The continuous Hahn polynomials ''p''<sub>''n''</sub>(''x'';''a'',''b'',''c'',''d'') are orthogonal with respect to the weight function |
||
:<math>w(x)=\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d- |
:<math>w(x)=\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-ix).</math> |
||
In particular, they satisfy the orthogonality relation<ref>Koekoek, Lesky, & Swarttouw (2010), p. 200.</ref><ref>Askey, R. (1985), "Continuous Hahn polynomials", ''J. Phys. A: Math. Gen.'' '''18''': pp. L1017-L1019.</ref> |
In particular, they satisfy the orthogonality relation<ref>Koekoek, Lesky, & Swarttouw (2010), p. 200.</ref><ref>Askey, R. (1985), "Continuous Hahn polynomials", ''J. Phys. A: Math. Gen.'' '''18''': pp. L1017-L1019.</ref> |
||
:<math>\begin{align}&\frac{1}{2\pi}\int_{-\infty}^{\infty}\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-ix)\,p_m(x;a,b,c,d)\,p_n(x;a,b,c,d)\,dx\\ |
:<math>\begin{align}&\frac{1}{2\pi}\int_{-\infty}^{\infty}\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-ix)\,p_m(x;a,b,c,d)\,p_n(x;a,b,c,d)\,dx\\ |
Revision as of 14:58, 5 January 2018
In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by
Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials, and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.
Orthogonality
The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function
In particular, they satisfy the orthogonality relation[1][2]
Recurrence and difference relations
This section is empty. You can help by adding to it. (September 2011) |
Rodrigues formula
This section is empty. You can help by adding to it. (September 2011) |
Generating function
This section is empty. You can help by adding to it. (September 2011) |
Relation to other polynomials
- Wilson polynomials, a generalization of continuous Hahn polynomials
References
- Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.