Jump to content

Continuous Hahn polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Nejssor (talk | contribs)
Corrected signs in gamma functions
Nejssor (talk | contribs)
m Cleanup on previous edit
Line 8: Line 8:
==Orthogonality==
==Orthogonality==
The continuous Hahn polynomials ''p''<sub>''n''</sub>(''x'';''a'',''b'',''c'',''d'') are orthogonal with respect to the weight function
The continuous Hahn polynomials ''p''<sub>''n''</sub>(''x'';''a'',''b'',''c'',''d'') are orthogonal with respect to the weight function
:<math>w(x)=\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-+ix).</math>
:<math>w(x)=\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-ix).</math>
In particular, they satisfy the orthogonality relation<ref>Koekoek, Lesky, & Swarttouw (2010), p. 200.</ref><ref>Askey, R. (1985), "Continuous Hahn polynomials", ''J. Phys. A: Math. Gen.'' '''18''': pp. L1017-L1019.</ref>
In particular, they satisfy the orthogonality relation<ref>Koekoek, Lesky, & Swarttouw (2010), p. 200.</ref><ref>Askey, R. (1985), "Continuous Hahn polynomials", ''J. Phys. A: Math. Gen.'' '''18''': pp. L1017-L1019.</ref>
:<math>\begin{align}&\frac{1}{2\pi}\int_{-\infty}^{\infty}\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-ix)\,p_m(x;a,b,c,d)\,p_n(x;a,b,c,d)\,dx\\
:<math>\begin{align}&\frac{1}{2\pi}\int_{-\infty}^{\infty}\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-ix)\,p_m(x;a,b,c,d)\,p_n(x;a,b,c,d)\,dx\\

Revision as of 14:58, 5 January 2018

In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by

Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials, and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.

Orthogonality

The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function

In particular, they satisfy the orthogonality relation[1][2]

Recurrence and difference relations

Rodrigues formula

Generating function

Relation to other polynomials

References

  • Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  1. ^ Koekoek, Lesky, & Swarttouw (2010), p. 200.
  2. ^ Askey, R. (1985), "Continuous Hahn polynomials", J. Phys. A: Math. Gen. 18: pp. L1017-L1019.