Jump to content

Continuous Hahn polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Nejssor (talk | contribs)
Nejssor (talk | contribs)
m Uniform style for references
Line 14: Line 14:


==Recurrence and difference relations==
==Recurrence and difference relations==
The sequence of continuous Hahn polynomials satisfies the recurrence relation<ref>Koekoek, Lesky, & Swarttouw (2010), p. 201</ref>
The sequence of continuous Hahn polynomials satisfies the recurrence relation<ref>Koekoek, Lesky, & Swarttouw (2010), p. 201.</ref>
:<math>xp_n(x)=p_{n+1}(x)+i(A_n+C_n)p_{n}(x)-A_{n-1}C_n p_{n-1}(x),</math>
:<math>xp_n(x)=p_{n+1}(x)+i(A_n+C_n)p_{n}(x)-A_{n-1}C_n p_{n-1}(x),</math>
:<math>\begin{align}
:<math>\begin{align}
Line 23: Line 23:


==Rodrigues formula==
==Rodrigues formula==
The continuous Hahn polynomials are given by the Rodrigues-like formula<ref>Koekoek, Lesky, & Swarttouw, p. 202.</ref>
The continuous Hahn polynomials are given by the Rodrigues-like formula<ref>Koekoek, Lesky, & Swarttouw (2010), p. 202.</ref>
:<math>\begin{align}&\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-ix)\,p_n(x;a,b,c,d)\\
:<math>\begin{align}&\Gamma(a+ix)\,\Gamma(b+ix)\,\Gamma(c-ix)\,\Gamma(d-ix)\,p_n(x;a,b,c,d)\\
&\qquad=\frac{(-1)^n}{n!}\frac{d^n}{dx^n}\left(\Gamma\left(a+\frac{n}{2}+ix\right)\,\Gamma\left(b+\frac{n}{2}+ix\right)\,\Gamma\left(c+\frac{n}{2}-ix\right)\,\Gamma\left(d+\frac{n}{2}-ix\right)\right).\end{align}</math>
&\qquad=\frac{(-1)^n}{n!}\frac{d^n}{dx^n}\left(\Gamma\left(a+\frac{n}{2}+ix\right)\,\Gamma\left(b+\frac{n}{2}+ix\right)\,\Gamma\left(c+\frac{n}{2}-ix\right)\,\Gamma\left(d+\frac{n}{2}-ix\right)\right).\end{align}</math>

Revision as of 15:35, 5 January 2018

In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by

Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials, and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.

Orthogonality

The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function

In particular, they satisfy the orthogonality relation[1][2]

Recurrence and difference relations

The sequence of continuous Hahn polynomials satisfies the recurrence relation[3]

Rodrigues formula

The continuous Hahn polynomials are given by the Rodrigues-like formula[4]

Generating function

Relation to other polynomials

References

  • Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten, 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  1. ^ Koekoek, Lesky, & Swarttouw (2010), p. 200.
  2. ^ Askey, R. (1985), "Continuous Hahn polynomials", J. Phys. A: Math. Gen. 18: pp. L1017-L1019.
  3. ^ Koekoek, Lesky, & Swarttouw (2010), p. 201.
  4. ^ Koekoek, Lesky, & Swarttouw (2010), p. 202.