M. King Hubbert: Difference between revisions
Line 29: | Line 29: | ||
Hubbert made several contributions to geophysics, including a mathematical demonstration that [[Rock (geology)|rock]] in the [[earth's crust]], because it is under immense pressure in large areas, should exhibit [[Plasticity (physics)|plasticity]], similar to [[clay]]. This demonstration explained the observed results that the earth's crust deforms over time. He also studied the flow of underground fluids. |
Hubbert made several contributions to geophysics, including a mathematical demonstration that [[Rock (geology)|rock]] in the [[earth's crust]], because it is under immense pressure in large areas, should exhibit [[Plasticity (physics)|plasticity]], similar to [[clay]]. This demonstration explained the observed results that the earth's crust deforms over time. He also studied the flow of underground fluids. |
||
Based on theoretical arguments, Hubbert (1940)<ref name="Hubbert1940">{{cite journal|last1=Hubbert|first1=M.K.| |
Based on theoretical arguments, Hubbert (1940)<ref name="Hubbert1940">{{cite journal|last1=Hubbert|first1=M.K.|date=November-December 1940|title=The theory of groundwater motion|journal=Journal of Geology|volume=48|issue=8|pages=785-944|url= http://www.jstor.org/stable/30057101}}</ref> proposed a constitutive equation <math> K_{abs} = N D^{2} </math> for absolute permeability <math> K_{abs}</math> of a underground water or oil reservoir where <math> D </math> is the average grain diameter and <math> N </math> is a dimensionless proportionality constant. However, [[Kozeny-Carman equation|Kozeny]] (1927) proposed a constitutive equation for absolute permeability which contains Hubbert's proposal as a factor. In the same paper Hubbert (1940) also presented a force potential, <math> \Phi_{h} </math>, that bears his name: |
||
:<math> \Phi_{h} = \int_{Pref}^{P} \frac{dP}{\rho(P)}+gz \implies \nabla\Phi_{h} =\frac{1}{\rho}\nabla P + g \nabla z </math> |
|||
:<math> K_{abs} = N D^{2} </math> |
|||
where <math> D </math> is the average grain diameter and <math> N </math> is a dimensionless proportionality constant. [[Kozeny-Carman equation|Kozeny]] (1927) proposed a constitutive equation for absolute permeability which contains Hubbert's proposal as a factor. |
|||
Hubbert (1956)<ref name="Hubbert1956c">{{cite journal|last1=Hubbert|first1=M.K.|year=1956|title=Darcy's Law and the Field Equations of the Flow of Underground Fluids|journal=Trans. AIME|volume=207|pages=222-239}}</ref> later showed that [[Darcy's law]] can be derived from the [[Navier-Stokes equation]] of motion of a viscous fluid. |
Hubbert (1956)<ref name="Hubbert1956c">{{cite journal|last1=Hubbert|first1=M.K.|year=1956|title=Darcy's Law and the Field Equations of the Flow of Underground Fluids|journal=Trans. AIME|volume=207|pages=222-239}}</ref> later showed that [[Darcy's law]] can be derived from the [[Navier-Stokes equation]] of motion of a viscous fluid. |
Revision as of 11:09, 7 January 2018
M. King Hubbert | |
---|---|
Born | Marion King Hubbert October 5, 1903 San Saba, Texas, U.S. |
Died | October 11, 1989 Bethesda, Maryland, U.S.[1] | (aged 86)
Nationality | American |
Occupation(s) | Geologist, geophysicist |
Known for | Hubbert peak theory |
Awards | Penrose Medal (1973) Vetlesen Prize (1981) Elliott Cresson Medal (1981) |
Marion King Hubbert (October 5, 1903 – October 11, 1989) was an American geologist and geophysicist. He worked at the Shell research lab in Houston, Texas. He made several important contributions to geology, geophysics, and petroleum geology, most notably the Hubbert curve and Hubbert peak theory (a basic component of peak oil), with important political ramifications. He was often referred to as "M. King Hubbert" or "King Hubbert".
Biography
Hubbert was born in San Saba, Texas. He attended the University of Chicago, where he received his B.S. in 1926, his M.S. in 1928, and his Ph.D in 1937, studying geology, mathematics, and physics. He worked as an assistant geologist for the Amerada Petroleum Company for two years while pursuing his Ph.D., additionally teaching geophysics at Columbia University. He also served as a senior analyst at the Board of Economic Warfare. He joined the Shell Oil Company in 1943, retiring from that firm in 1964. After he retired from Shell, he became a senior research geophysicist for the United States Geological Survey until his retirement in 1976. He also held positions as a professor of geology and geophysics at Stanford University from 1963 to 1968, and as a professor at UC Berkeley from 1973 to 1976.[citation needed]
Hubbert was an avid technocrat. He co-founded Technocracy Incorporated with Howard Scott. Hubbert wrote a study course[2] that was published without attribution called the Technocracy Study Course,[3] which advocates a non-market economics form of energy accounting,[4] in contrast to the current price system method.[5] Hubbert was a member of the board of governors, and served as secretary of education in that organisation.[6]
Research
Hubbert made several contributions to geophysics, including a mathematical demonstration that rock in the earth's crust, because it is under immense pressure in large areas, should exhibit plasticity, similar to clay. This demonstration explained the observed results that the earth's crust deforms over time. He also studied the flow of underground fluids.
Based on theoretical arguments, Hubbert (1940)[7] proposed a constitutive equation for absolute permeability of a underground water or oil reservoir where is the average grain diameter and is a dimensionless proportionality constant. However, Kozeny (1927) proposed a constitutive equation for absolute permeability which contains Hubbert's proposal as a factor. In the same paper Hubbert (1940) also presented a force potential, , that bears his name:
Hubbert (1956)[8] later showed that Darcy's law can be derived from the Navier-Stokes equation of motion of a viscous fluid.
Hubbert is best known for his studies on the size of oil fields and natural gas reserves, and the limits these impose on rates of oil and gas production. He predicted that, for any given geographical area, from an individual oil field to the planet as a whole, the rate of petroleum production of the reserve over time would resemble a bell curve. Based on his theory, he presented a paper to the 1956 meeting of the American Petroleum Institute in San Antonio, Texas, which predicted that overall petroleum production would peak in the United States between 1965, which he considered most likely, and 1970, which he considered an upper-bound.[9] At first his prediction received much criticism, for the most part because many other predictions of oil capacity had been made over the preceding half century, but these had usually been based on the reserves-to-production ratio, had not taken into account future discoveries, and had proven false.[10] Hubbert became famous when this prediction proved correct in 1970.
Between October 17, 1973 and March 1974, the Organization of Arab Petroleum Exporting Countries (OAPEC) ceased shipments of petroleum to the United States, because of the U.S. giving relief to Israel during the Israeli–Arab war, thus causing what has been called the 1973 energy crisis.
In 1974, Hubbert projected that global oil production would peak in 1995 "if current trends continue".[11] Various subsequent predictions have been made by others as trends have fluctuated in the intervening years.
Hubbert believed that solar power would be a practical renewable energy replacement for fossil fuels, and that nuclear energy in breeder reactors would be able to sustain us for centuries.[9] He also states that "provided world population can somehow be brought under control, we may at last have found an energy supply (uranium) adequate for our needs for at least the next few centuries of the 'foreseeable future'."[12]
Contributions
Hubbert's contributions to science have been summarized[13] as follows:
- Mathematical demonstration that rock in the earth's crust is plastic, and that the earth's crust deforms over time.
- Prediction of migration paths of hydrocarbons.
- Predictions of peak rates of oil and gas production, based on a consistent mathematical model which ties reserves, discovery rates, and production rates. His model remains highly influential, and has been widely applied to other finite resources.
Renewable resources
- Fisheries: At least one researcher has attempted to perform Hubbert linearization (Hubbert curve) on the whaling industry, as well as charting the transparently dependent price of caviar on sturgeon depletion.[14] The Atlantic northwest cod fishery was a renewable resource, but the numbers of fish taken exceeded the fish's rate of recovery. The end of the cod fishery matches the exponential drop of the Hubbert bell curve. Another example is the North Sea cod fishery.[15] The comparison of the cases of fisheries and of mineral extraction tells us that the human pressure on the environment is causing a wide range of resources to go through a depletion cycle which mirrors the Hubbert curve.
Accolades
Hubbert was a member of the National Academy of Sciences and the American Academy of Arts and Sciences. He was long affiliated with the Geological Society of America, receiving their Arthur L. Day Medal in 1954, being elected President of the Society in 1962, and receiving the Society's Penrose Medal in 1973. He received the Vetlesen Prize from the G. Unger Vetlesen Foundation and Columbia University in 1981. He also received the Elliott Cresson Medal in 1981.
Hubbert on peak oil
Hubbert explaining some aspects of worldwide peak oil. 1976 video clip of M King Hubbert speaking about fossil fuel depletion on YouTube.
See also
Notes
- ^ Narvaez, Alfonso (October 17, 1989). "M. King Hubbert, 86, Geologist; Research Changed Oil Production". New York Times. Retrieved 21 November 2013.
- ^ retrieved August-4-2011
- ^ http://www.aip.org/history/ohilist/5031_4.html Interview with Dr. M. King Hubbert By Ronald Doel January 17, 1989 retrieval August-4-2011
- ^ Environmental Decision making, Science and Technology
- ^ Cutler J. Cleveland, "Biophysical economics", Encyclopedia of Earth, Last updated: September 14, 2006.
- ^ Hubbert investigation (1943), p41 (p50 of PDF)
- ^ Hubbert, M.K. (November–December 1940). "The theory of groundwater motion". Journal of Geology. 48 (8): 785–944.
{{cite journal}}
: CS1 maint: date format (link) - ^ Hubbert, M.K. (1956). "Darcy's Law and the Field Equations of the Flow of Underground Fluids". Trans. AIME. 207: 222–239.
- ^ a b Hubbert, M. King (June 1956). "Nuclear Energy and the Fossil Fuels" (PDF). Shell Oil Company/American Petroleum Institute. Archived from the original (PDF) on 2008-05-27. Retrieved 2014-11-10.
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help), Presented before the Spring Meeting of the Southern District, American Petroleum Institute, Plaza Hotel, San Antonio, Texas, March 7–9, 1956 - ^ Deffeyes, Kenneth S. (2001). Hubbert's Peak: The Impending World Oil Shortage. Princeton University Press. pp. 1–13. Archived from the original on 2010-07-03.
{{cite book}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - ^ "Oil, the Dwindling Treasure" National Geographic, June 1974
- ^ M. King Hubbert (June 1956). "Nuclear Energy and the Fossil Fuels 'Drilling and Production Practice'" (PDF). American Petroleum Institute. p. 36. Archived from the original (PDF) on 2008-05-27. Retrieved 2008-04-18.
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - ^ http://www.energy.wisc.edu/wp-content/uploads/2006/10/HubbertCycleLecture%20Patzek%20UWMadison%20Oct%202006.pdf
- ^ http://www.aspoitalia.net/index.php?option=com_content&task=view&id=34&Itemid=39
- ^ http://www.hubbertpeak.com/laherrere/multihub.htm
External links
- American geophysicists
- American petroleum geologists
- 1903 births
- 1989 deaths
- Penrose Medal winners
- Royal Dutch Shell people
- Stanford University Department of Geology faculty
- Stanford University Department of Geophysics faculty
- Technocracy movement
- United States Geological Survey personnel
- University of California, Berkeley faculty
- University of Chicago alumni
- People from Houston
- 20th-century American geologists