Quasisymmetric map: Difference between revisions
Line 12: | Line 12: | ||
; Inverses are quasisymmetric : If ''f'' : ''X'' → ''Y'' is an invertible ''η''-quasisymmetric map as above, then its inverse map is <math>\eta'</math>-quasisymmetric, where <math>\eta'</math>(''t'') = 1/''η''(1/''t''). |
; Inverses are quasisymmetric : If ''f'' : ''X'' → ''Y'' is an invertible ''η''-quasisymmetric map as above, then its inverse map is <math>\eta'</math>-quasisymmetric, where <math>\eta'</math>(''t'') = 1/''η''(1/''t''). |
||
; Quasisymmetric maps preserve relative sizes of sets : If ''A'' and ''B'' are subsets of ''X'' and ''A'' is a subset of ''B'', then |
; Quasisymmetric maps preserve relative sizes of sets : If ''A'' and ''B'' are subsets of ''X'' and ''A'' is a subset of ''B'', then |
||
:: <math> \frac{1}{2\eta(\frac{\text{diam } |
:: <math> \frac{1}{2\eta(\frac{\text{diam }A}{\text{diam }B})}\leq \frac{\text{diam }f(B)}{\text{diam }f(A)}\leq \eta\left(\frac{2\text{diam }B}{\text{diam }A}\right).</math> |
||
==Examples== |
==Examples== |
Revision as of 16:20, 23 July 2018
In mathematics, a quasisymmetric homeomorphism between metric spaces is a map that generalizes bi-Lipschitz maps. While bi-Lipschitz maps shrink or expand the diameter of a set by no more than a multiplicative factor, quasisymmetric maps satisfy the weaker geometric property that they preserve the relative sizes of sets: if two sets A and B have diameters t and are no more than distance t apart, then the ratio of their sizes changes by no more than a multiplicative constant. These maps are also related to quasiconformal maps, since in many circumstances they are in fact equivalent.[1]
Definition
Let (X, dX) and (Y, dY) be two metric spaces. A homeomorphism f:X → Y is said to be η-quasisymmetric if there is an increasing function η : [0, ∞) → [0, ∞) such that for any triple x, y, z of distinct points in X, we have
Basic properties
- Inverses are quasisymmetric
- If f : X → Y is an invertible η-quasisymmetric map as above, then its inverse map is -quasisymmetric, where (t) = 1/η(1/t).
- Quasisymmetric maps preserve relative sizes of sets
- If A and B are subsets of X and A is a subset of B, then
Examples
Weakly quasisymmetric maps
A map f:X→Y is said to be H-weakly-quasisymmetric for some H > 0 if for all triples of distinct points x,y,z in X, we have
Not all weakly quasisymmetric maps are quasisymmetric. However, if X is connected and X and Y are doubling, then all weakly quasisymmetric maps are quasisymmetric. The appeal of this result is that proving weak-quasisymmetry is much easier than proving quasisymmetry directly, and in many natural settings the two notions are equivalent.
δ-monotone maps
A monotone map f:H → H on a Hilbert space H is δ-monotone if for all x and y in H,
To grasp what this condition means geometrically, suppose f(0) = 0 and consider the above estimate when y = 0. Then it implies that the angle between the vector x and its image f(x) stays between 0 and arccos δ < π/2.
These maps are quasisymmetric, although they are a much narrower subclass of quasisymmetric maps. For example, while a general quasisymmetric map in the complex plane could map the real line to a set of Hausdorff dimension strictly greater than one, a δ-monotone will always map the real line to a rotated graph of a Lipschitz function L:ℝ → ℝ.[2]
Doubling measures
The real line
Quasisymmetric homeomorphisms of the real line to itself can be characterized in terms of their derivatives.[3] An increasing homeomorphism f:ℝ → ℝ is quasisymmetric if and only if there is a constant C > 0 and a doubling measure μ on the real line such that
Euclidean space
An analogous result holds in Euclidean space. Suppose C = 0 and we rewrite the above equation for f as
Writing it this way, we can attempt to define a map using this same integral, but instead integrate (what is now a vector valued integrand) over ℝn: if μ is a doubling measure on ℝn and
then the map
is quasisymmetric (in fact, it is δ-monotone for some δ depending on the measure μ).[4]
Quasisymmetry and quasiconformality in Euclidean space
Let Ω and Ω´ be open subsets of ℝn. If f : Ω → Ω´ is η-quasisymmetric, then it is also K-quasiconformal, where K > 0 is a constant depending on η.
Conversely, if f : Ω → Ω´ is K-quasiconformal and B(x, 2r) is contained in Ω, then f is η-quasisymmetric on B(x, r), where η depends only on K.
See also
References
- ^ Heinonen, Juha (2001). Lectures on Analysis on Metric Spaces. Universitext. New York: Springer-Verlag. pp. x+140. ISBN 0-387-95104-0.
- ^ Kovalev, Leonid V. (2007). "Quasiconformal geometry of monotone mappings". Journal of the London Mathematical Society. 75 (2): 391–408. doi:10.1112/jlms/jdm008.
- ^ Beurling, A.; Ahlfors, L. (1956). "The boundary correspondence under quasiconformal mappings". Acta Math. 96: 125–142. doi:10.1007/bf02392360.
- ^ Kovalev, Leonid; Maldonado, Diego; Wu, Jang-Mei (2007). "Doubling measures, monotonicity, and quasiconformality". Math. Z. 257 (3): 525–545. arXiv:math/0611110. doi:10.1007/s00209-007-0132-5.