Jump to content

Bockstein homomorphism: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
name, links, tex
Line 1: Line 1:
In [[homological algebra]], the '''Bockstein homomorphism''', introduced by {{harvs|txt|authorlink=Meyer Bockstein|last=Bockstein|year1=1942|year2=1943|year3=1958}}, is a [[connecting homomorphism]] associated with a [[short exact sequence]]
In [[homological algebra]], the '''Bockstein homomorphism''', introduced by {{harvs|txt|authorlink=Meyer Bockstein|last=Bockstein|first=Meyer |year1=1942|year2=1943|year3=1958}}, is a [[connecting homomorphism]] associated with a [[short exact sequence]]


:0 ''P'' ''Q'' ''R'' 0
:<math>0 \to P \to Q \to R \to 0</math>


of [[abelian group]]s, when they are introduced as coefficients into a [[chain complex]] ''C'', and which appears in the [[Homology (mathematics)|homology]] groups as a homomorphism reducing degree by one,
of [[abelian group]]s, when they are introduced as coefficients into a [[chain complex]] ''C'', and which appears in the [[Homology (mathematics)|homology]] groups as a homomorphism reducing degree by one,
Line 25: Line 25:
==References==
==References==


*{{Citation | last1=Bockstein | first1=M. | title=Universal systems of ∇-homology rings | mr=0008701 | year=1942 | journal=C. R. (Doklady) Acad. Sci. URSS (N.S.) | volume=37 | pages=243–245}}
*{{Citation | last1=Bockstein | first1=Meyer |authorlink=Meyer Bockstein| title=Universal systems of ∇-homology rings | mr=0008701 | year=1942 | journal=C. R. (Doklady) Acad. Sci. URSS (N.S.) | volume=37 | pages=243–245}}
*{{Citation | last1=Bockstein | first1=M. | title=A complete system of fields of coefficients for the ∇-homological dimension | mr=0009115 | year=1943 | journal=C. R. (Doklady) Acad. Sci. URSS (N.S.) | volume=38 | pages=187–189}}
*{{Citation | last1=Bockstein | first1=Meyer |authorlink=Meyer Bockstein| title=A complete system of fields of coefficients for the ∇-homological dimension | mr=0009115 | year=1943 | journal=C. R. (Doklady) Acad. Sci. URSS (N.S.) | volume=38 | pages=187–189}}
* {{citation
* {{citation
|last= Bockstein
|last= Bockstein

Revision as of 13:14, 26 August 2018

In homological algebra, the Bockstein homomorphism, introduced by Meyer Bockstein (1942, 1943, 1958), is a connecting homomorphism associated with a short exact sequence

of abelian groups, when they are introduced as coefficients into a chain complex C, and which appears in the homology groups as a homomorphism reducing degree by one,

β: Hi(C, R) → Hi − 1(C, P).

To be more precise, C should be a complex of free, or at least torsion-free, abelian groups, and the homology is of the complexes formed by tensor product with C (some flat module condition should enter). The construction of β is by the usual argument (snake lemma).

A similar construction applies to cohomology groups, this time increasing degree by one. Thus we have

β: Hi(C, R) → Hi + 1(C, P).

The Bockstein homomorphism β of the coefficient sequence

0 → Z/pZZ/p2ZZ/pZ → 0

is used as one of the generators of the Steenrod algebra. This Bockstein homomorphism has the two properties:

ββ = 0 if p>2
β(a∪b) = β(a)∪b + (-1)dim a a∪β(b)

in other words it is a superderivation acting on the cohomology mod p of a space.

See also

References

  • Bockstein, Meyer (1942), "Universal systems of ∇-homology rings", C. R. (Doklady) Acad. Sci. URSS (N.S.), 37: 243–245, MR 0008701
  • Bockstein, Meyer (1943), "A complete system of fields of coefficients for the ∇-homological dimension", C. R. (Doklady) Acad. Sci. URSS (N.S.), 38: 187–189, MR 0009115
  • Bockstein, Meyer (1958), "Sur la formule des coefficients universels pour les groupes d'homologie", Comptes Rendus de l'Académie des Sciences, Série I, 247: 396–398, MR 0103918
  • Hatcher, Allen (2002), Algebraic Topology, Cambridge University Press, ISBN 978-0-521-79540-1, MR 1867354.
  • Spanier, Edwin H. (1981), Algebraic topology. Corrected reprint, New York-Berlin: Springer-Verlag, pp. xvi+528, ISBN 0-387-90646-0, MR 0666554