Carvacrol: Difference between revisions
Citation bot (talk | contribs) m Removed parameters. You can use this bot yourself. Report bugs here. | User-activated; Category:Pages_with_DOIs_inactive_since_2017. |
No edit summary |
||
Line 58: | Line 58: | ||
| postscript = <!--None--> |
| postscript = <!--None--> |
||
}}</ref> |
}}</ref> |
||
| MagSus = - |
| MagSus = {{val|-1.091e-4}} cm<sup>3</sup>/mol |
||
}} |
}} |
||
}} |
}} |
||
Line 65: | Line 65: | ||
== Natural occurrence == |
== Natural occurrence == |
||
Carvacrol is present in the [[essential oil]] of ''[[Origanum vulgare]]'' (oregano), oil of [[thyme]], oil obtained from [[Lepidium|pepperwort]], and [[Monarda fistulosa|wild bergamot]]. The essential oil of [[thyme]] subspecies contains between 5 and 75% of carvacrol, while ''[[Satureja]]'' (savory) subspecies have a content between 1 and 45%.<ref>{{cite journal|last1=Vladić|first1=Jelena|last2=Zeković|first2=Zoran|last3=Jokić|first3=Stela|last4=Svilović|first4=Sandra|last5=Kovačević|first5=Strahinja|last6=Vidović|first6=Senka|title=Winter savory: Supercritical carbon dioxide extraction and mathematical modeling of extraction process|journal=The Journal of Supercritical Fluids|date=November 2016|volume=117|pages=89–97|doi=10.1016/j.supflu.2016.05.027|url=http://www.sciencedirect.com/science/article/pii/S0896844616301632|accessdate=28 September 2017}}</ref> ''[[Origanum majorana]]'' (marjoram) and [[Dittany of Crete]] are rich in carvacrol, 50% and |
Carvacrol is present in the [[essential oil]] of ''[[Origanum vulgare]]'' (oregano), oil of [[thyme]], oil obtained from [[Lepidium|pepperwort]], and [[Monarda fistulosa|wild bergamot]]. The essential oil of [[thyme]] subspecies contains between 5% and 75% of carvacrol, while ''[[Satureja]]'' (savory) subspecies have a content between 1% and 45%.<ref>{{cite journal|last1=Vladić|first1=Jelena|last2=Zeković|first2=Zoran|last3=Jokić|first3=Stela|last4=Svilović|first4=Sandra|last5=Kovačević|first5=Strahinja|last6=Vidović|first6=Senka|title=Winter savory: Supercritical carbon dioxide extraction and mathematical modeling of extraction process|journal=The Journal of Supercritical Fluids|date=November 2016|volume=117|pages=89–97|doi=10.1016/j.supflu.2016.05.027|url=http://www.sciencedirect.com/science/article/pii/S0896844616301632|accessdate=28 September 2017}}</ref> ''[[Origanum majorana]]'' (marjoram) and [[Dittany of Crete]] are rich in carvacrol, 50% and 60–80% respectively.<ref name="pmid15567271">{{cite journal |doi=10.1016/j.fitote.2004.05.002 |pmid=15567271 |title=Constituents of aromatic plants: Carvacrol |journal=Fitoterapia |volume=75 |issue=7–8 |pages=801–4 |year=2004 |last1=De Vincenzi |first1=M. |last2=Stammati |first2=A. |last3=De Vincenzi |first3=A. |last4=Silano |first4=M. }}</ref> |
||
It is also found in [[tequila]]<ref>{{cite journal |title=Characterization of volatile compounds from ethnic Agave alcoholic beverages by gas chromatography-mass spectrometry |first1=Antonio |last1=De León |
It is also found in [[tequila]]<ref>{{cite journal |title=Characterization of volatile compounds from ethnic Agave alcoholic beverages by gas chromatography-mass spectrometry |first1=Antonio |last1=De León Rodríguez |first2=Pilar |last2=Escalante Minakata |first3=María I. |last3=Jiménez García |first4=Leandro G. |last4=Ordóñez Acevedo |first5=José L. |last5=Flores Flores |first6=Ana P. |last6=Barba de la Rosa |journal=Food Technology and Biotechnology |year=2008 |volume=46 |issue=4 |pages=448–55 |url=http://www.ftb.com.hr/index.php/archives/67-volume-46-issue-no-4/256 }}</ref> and [[Lippia graveolens]] (Mexican oregano) in the [[verbena]] family. |
||
== Research == |
== Research == |
||
{{medical citations needed|section|date=June 2018}} |
{{medical citations needed|section|date=June 2018}} |
||
In vitro, carvacrol inhibits the growth of several [[bacteria]] strains, e.g. ''[[Escherichia coli]]''.<ref name="pmid18366181">{{cite journal |doi=10.1021/jf703629s |pmid=18366181 |title=Storage Stability and Antibacterial Activity against Escherichia coli O157:H7 of Carvacrol in Edible Apple Films Made by Two Different Casting Methods |journal=Journal of Agricultural and Food Chemistry |volume=56 |issue=9 |pages=3082–8 |year=2008 |last1=Du |first1=Wen-Xian |last2=Olsen |first2=Carl W. |last3=Avena-Bustillos |first3=Roberto J. |last4=McHugh |first4=Tara H. |last5=Levin |first5=Carol E. |last6=Friedman |first6=Mendel }}</ref> In ''[[Pseudomonas aeruginosa]]'' in vitro, it disrupts [[cell membrane]]s of these bacteria and inhibits their proliferation.<ref name="pmid17897196">{{cite journal |doi=10.1111/j.1365-2672.2007.03353.x |pmid=17897196 |title=Susceptibility and intrinsic tolerance of ''Pseudomonas aeruginosato'' selected plant volatile compounds |journal=Journal of Applied Microbiology |volume=103 |issue=4 |pages=930–6 |year=2007 |last1=Cox |first1=S.D. |last2=Markham |first2=J.L. }}</ref> |
[[In vitro]], carvacrol inhibits the growth of several [[bacteria]] strains, e.g. ''[[Escherichia coli]]''.<ref name="pmid18366181">{{cite journal |doi=10.1021/jf703629s |pmid=18366181 |title=Storage Stability and Antibacterial Activity against Escherichia coli O157:H7 of Carvacrol in Edible Apple Films Made by Two Different Casting Methods |journal=Journal of Agricultural and Food Chemistry |volume=56 |issue=9 |pages=3082–8 |year=2008 |last1=Du |first1=Wen-Xian |last2=Olsen |first2=Carl W. |last3=Avena-Bustillos |first3=Roberto J. |last4=McHugh |first4=Tara H. |last5=Levin |first5=Carol E. |last6=Friedman |first6=Mendel }}</ref> In ''[[Pseudomonas aeruginosa]]'' in vitro, it disrupts [[cell membrane]]s of these bacteria and inhibits their proliferation.<ref name="pmid17897196">{{cite journal |doi=10.1111/j.1365-2672.2007.03353.x |pmid=17897196 |title=Susceptibility and intrinsic tolerance of ''Pseudomonas aeruginosato'' selected plant volatile compounds |journal=Journal of Applied Microbiology |volume=103 |issue=4 |pages=930–6 |year=2007 |last1=Cox |first1=S. D. |last2=Markham |first2=J. L. }}</ref> |
||
Application of carvacrol on the human tongue, as well as activation of TRPV3, causes a sensation of warmth. Both pro and anti-[[apoptosis|apoptotic]] effect of this compound have been proposed in various cellular systems, but conclusive evidence to support a direct effect has not been proven.<ref>{{cite journal |pmid=26724845 |year=2016 |author1=Bhakkiyalakshmi |first1=E |title=Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells |journal=European Journal of Pharmacology |volume=772 |pages=92–8 |last2=Suganya |first2=N |last3=Sireesh |first3=D |last4=Krishnamurthi |first4=K |last5=Saravana Devi |first5=S |last6=Rajaguru |first6=P |last7=Ramkumar |first7=K. M. |doi=10.1016/j.ejphar.2015.12.046 }}</ref><ref>{{cite journal |pmid=26607464 |year=2016 |author1=Zhang |first1=Q |title=Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia |journal=European Journal of Pharmacology |volume=770 |pages=134–46 |last2=Fan |first2=K |last3=Wang |first3=P |last4=Yu |first4=J |last5=Liu |first5=R |last6=Qi |first6=H |last7=Sun |first7=H |last8=Cao |first8=Y |doi=10.1016/j.ejphar.2015.11.037 }}</ref> |
Application of carvacrol on the human tongue, as well as activation of [[TRPV3]], causes a sensation of warmth. Both pro- and anti-[[apoptosis|apoptotic]] effect of this compound have been proposed in various cellular systems, but conclusive evidence to support a direct effect has not been proven.<ref>{{cite journal |pmid=26724845 |year=2016 |author1=Bhakkiyalakshmi |first1=E |title=Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells |journal=European Journal of Pharmacology |volume=772 |pages=92–8 |last2=Suganya |first2=N |last3=Sireesh |first3=D |last4=Krishnamurthi |first4=K |last5=Saravana Devi |first5=S |last6=Rajaguru |first6=P |last7=Ramkumar |first7=K. M. |doi=10.1016/j.ejphar.2015.12.046 }}</ref><ref>{{cite journal |pmid=26607464 |year=2016 |author1=Zhang |first1=Q |title=Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia |journal=European Journal of Pharmacology |volume=770 |pages=134–46 |last2=Fan |first2=K |last3=Wang |first3=P |last4=Yu |first4=J |last5=Liu |first5=R |last6=Qi |first6=H |last7=Sun |first7=H |last8=Cao |first8=Y |doi=10.1016/j.ejphar.2015.11.037 }}</ref> |
||
== Synthesis and derivatives == |
== Synthesis and derivatives == |
||
Carvacrol may be synthetically prepared by the fusion of [[cymol]] [[sulfonic acid]] with caustic [[potash]]; by the action of [[nitrous acid]] on 1-methyl-2-amino-4-propyl [[benzene]]; by prolonged heating of five parts of [[camphor]] with one part of [[iodine]]; or by heating [[carvol]] with glacial [[phosphoric acid]] or by performing a [[dehydrogenation]] of [[carvone]] with a |
Carvacrol may be synthetically prepared by the fusion of [[cymol]] [[sulfonic acid]] with caustic [[potash]]; by the action of [[nitrous acid]] on 1-methyl-2-amino-4-propyl [[benzene]]; by prolonged heating of five parts of [[camphor]] with one part of [[iodine]]; or by heating [[carvol]] with glacial [[phosphoric acid]] or by performing a [[dehydrogenation]] of [[carvone]] with a palladium-carbon catalyst. It is extracted from Origanum oil by means of a 50% potash solution. It is a thick oil that sets at 20 °C to a mass of crystals of melting point 0 °C, and boiling point 236–237 °C. Oxidation with [[ferric chloride]] converts it into [[dicarvacrol]], whilst [[phosphorus pentachloride]] transforms it into [[chlorcymol]]. |
||
== List of the plants that contain the chemical == |
== List of the plants that contain the chemical == |
Revision as of 20:27, 3 October 2018
Names | |
---|---|
Preferred IUPAC name
2-Methyl-5-(propan-2-yl)phenol | |
Other names
5-Isopropyl-2-methylphenol
2-Methyl-5-(1-methylethyl)phenol | |
Identifiers | |
3D model (JSmol)
|
|
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.007.173 |
KEGG | |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C10H14O | |
Molar mass | 150.217 g/mol |
Density | 0.9772 g/cm3 at 20 °C |
Melting point | 1 °C (34 °F; 274 K) |
Boiling point | 237.7 °C (459.9 °F; 510.8 K) |
insoluble | |
Solubility | soluble in ethanol, diethyl ether, carbon tetrachloride, acetone[2] |
−1.091×10−4 cm3/mol | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Carvacrol, or cymophenol, C6H3CH3(OH)(C3H7), is a monoterpenoid phenol. It has a characteristic pungent, warm odor of oregano.[3]
Natural occurrence
Carvacrol is present in the essential oil of Origanum vulgare (oregano), oil of thyme, oil obtained from pepperwort, and wild bergamot. The essential oil of thyme subspecies contains between 5% and 75% of carvacrol, while Satureja (savory) subspecies have a content between 1% and 45%.[4] Origanum majorana (marjoram) and Dittany of Crete are rich in carvacrol, 50% and 60–80% respectively.[5]
It is also found in tequila[6] and Lippia graveolens (Mexican oregano) in the verbena family.
Research
This section needs more reliable medical references for verification or relies too heavily on primary sources. (June 2018) |
In vitro, carvacrol inhibits the growth of several bacteria strains, e.g. Escherichia coli.[7] In Pseudomonas aeruginosa in vitro, it disrupts cell membranes of these bacteria and inhibits their proliferation.[8]
Application of carvacrol on the human tongue, as well as activation of TRPV3, causes a sensation of warmth. Both pro- and anti-apoptotic effect of this compound have been proposed in various cellular systems, but conclusive evidence to support a direct effect has not been proven.[9][10]
Synthesis and derivatives
Carvacrol may be synthetically prepared by the fusion of cymol sulfonic acid with caustic potash; by the action of nitrous acid on 1-methyl-2-amino-4-propyl benzene; by prolonged heating of five parts of camphor with one part of iodine; or by heating carvol with glacial phosphoric acid or by performing a dehydrogenation of carvone with a palladium-carbon catalyst. It is extracted from Origanum oil by means of a 50% potash solution. It is a thick oil that sets at 20 °C to a mass of crystals of melting point 0 °C, and boiling point 236–237 °C. Oxidation with ferric chloride converts it into dicarvacrol, whilst phosphorus pentachloride transforms it into chlorcymol.
List of the plants that contain the chemical
- Monarda didyma[11]
- Nigella sativa[12]
- Origanum compactum[13]
- Origanum dictamnus[14]
- Origanum microphyllum[15]
- Origanum onites[16][17]
- Origanum scabrum[15]
- Origanum syriacum[18]
- Origanum vulgare[19][20]
- Plectranthus amboinicus
- Thymus glandulosus[13]
- Lavandula multifida
- Origanum minutiflorum
Toxicology
Carvacrol does not have many long-term genotoxic risks. The cytotoxic effect of carvacrol can make it an effective antiseptic and antimicrobial agent. Carvacrol has been found to show antioxidant activity.[21]
Carvacrol has antimicrobial activity against 25 different periodontopathic bacteria and strains, [22] Cladosporium herbarum,[22] Penicillium glabrum,[22] and fungi such as F. moniliforme, R. solani, S. sclerotirum, and P. capisci.[22]
Compendial status
See also
Notes and references
- ^ "Carvacrol data sheet from Sigma-Aldrich".
- ^ Lide, David R. (1998). Handbook of Chemistry and Physics (87 ed.). Boca Raton, FL: CRC Press. pp. 3–346. ISBN 978-0-8493-0594-8.
- ^ Ultee, A; Slump, R. A.; Steging, G; Smid, E. J. (2000). "Antimicrobial activity of carvacrol toward Bacillus cereus on rice". Journal of Food Protection. 63 (5): 620–4. doi:10.4315/0362-028x-63.5.620. PMID 10826719.
- ^ Vladić, Jelena; Zeković, Zoran; Jokić, Stela; Svilović, Sandra; Kovačević, Strahinja; Vidović, Senka (November 2016). "Winter savory: Supercritical carbon dioxide extraction and mathematical modeling of extraction process". The Journal of Supercritical Fluids. 117: 89–97. doi:10.1016/j.supflu.2016.05.027. Retrieved 28 September 2017.
- ^ De Vincenzi, M.; Stammati, A.; De Vincenzi, A.; Silano, M. (2004). "Constituents of aromatic plants: Carvacrol". Fitoterapia. 75 (7–8): 801–4. doi:10.1016/j.fitote.2004.05.002. PMID 15567271.
- ^ De León Rodríguez, Antonio; Escalante Minakata, Pilar; Jiménez García, María I.; Ordóñez Acevedo, Leandro G.; Flores Flores, José L.; Barba de la Rosa, Ana P. (2008). "Characterization of volatile compounds from ethnic Agave alcoholic beverages by gas chromatography-mass spectrometry". Food Technology and Biotechnology. 46 (4): 448–55.
- ^ Du, Wen-Xian; Olsen, Carl W.; Avena-Bustillos, Roberto J.; McHugh, Tara H.; Levin, Carol E.; Friedman, Mendel (2008). "Storage Stability and Antibacterial Activity against Escherichia coli O157:H7 of Carvacrol in Edible Apple Films Made by Two Different Casting Methods". Journal of Agricultural and Food Chemistry. 56 (9): 3082–8. doi:10.1021/jf703629s. PMID 18366181.
- ^ Cox, S. D.; Markham, J. L. (2007). "Susceptibility and intrinsic tolerance of Pseudomonas aeruginosato selected plant volatile compounds". Journal of Applied Microbiology. 103 (4): 930–6. doi:10.1111/j.1365-2672.2007.03353.x. PMID 17897196.
- ^ Bhakkiyalakshmi, E; Suganya, N; Sireesh, D; Krishnamurthi, K; Saravana Devi, S; Rajaguru, P; Ramkumar, K. M. (2016). "Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells". European Journal of Pharmacology. 772: 92–8. doi:10.1016/j.ejphar.2015.12.046. PMID 26724845.
- ^ Zhang, Q; Fan, K; Wang, P; Yu, J; Liu, R; Qi, H; Sun, H; Cao, Y (2016). "Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia". European Journal of Pharmacology. 770: 134–46. doi:10.1016/j.ejphar.2015.11.037. PMID 26607464.
- ^ https://hort.purdue.edu/newcrop/proceedings1993/V2-628.html[full citation needed]
- ^ http://www.herbapolonica.pl/magazines-files/2733672-art.3.pdf[full citation needed]
- ^ a b Bouchra, Chebli; Achouri, Mohamed; Idrissi Hassani, L.M; Hmamouchi, Mohamed (2003). "Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr". Journal of Ethnopharmacology. 89 (1): 165–9. doi:10.1016/S0378-8741(03)00275-7. PMID 14522450.
- ^ Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. (2009). "Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity". Food Chemistry. 112 (1): 77–83. doi:10.1016/j.foodchem.2008.05.060.
- ^ a b Aligiannis, N.; Kalpoutzakis, E.; Mitaku, Sofia; Chinou, Ioanna B. (2001). "Composition and Antimicrobial Activity of the Essential Oils of Two Origanum Species". Journal of Agricultural and Food Chemistry. 49 (9): 4168–70. doi:10.1021/jf001494m. PMID 11559104.
- ^ Coskun, Sevki; Girisgin, Oya; Kürkcüoglu, Mine; Malyer, Hulusi; Girisgin, Ahmet Onur; Kırımer, Nese; Baser, Kemal Hüsnü (2008). "Acaricidal efficacy of Origanum onites L. Essential oil against Rhipicephalus turanicus (Ixodidae)". Parasitology Research. 103 (2): 259–61. doi:10.1007/s00436-008-0956-x. PMID 18438729.
- ^ Ruberto, Giuseppe; Biondi, Daniela; Meli, Rosa; Piattelli, Mario (1993). "Volatile flavour components of Sicilian Origanum onites L". Flavour and Fragrance Journal. 8 (4): 197–200. doi:10.1002/ffj.2730080406.
- ^ https://www.researchgate.net/profile/Abdollah_Ghasemi_Pirbalouti/publication/235329752_Variation_in_antibacterial_activity_thymol_and_carvacrol_contents_of_wild_populations_of_Thymus_daenensis_subsp_daenensis_Celak/links/0fcfd510dedb8868ac000000.pdf[full citation needed]
- ^ Kanias, G. D.; Souleles, C.; Loukis, A.; Philotheou-Panou, E. (1998). "Trace elements and essential oil composition in chemotypes of the aromatic plant Origanum vulgare". Journal of Radioanalytical and Nuclear Chemistry. 227 (1–2): 23–31. doi:10.1007/BF02386426.
- ^ Figiel, Adam; Szumny, Antoni; Gutiérrez-Ortíz, Antonio; Carbonell-Barrachina, Ángel A. (2010). "Composition of oregano essential oil (Origanum vulgare) as affected by drying method". Journal of Food Engineering. 98 (2): 240–7. doi:10.1016/j.jfoodeng.2010.01.002.
- ^ Özkan, Aysun; Erdoğan, Ayşe (2011). "A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components". Tübitak. 35 (6): 735–42. doi:10.3906/biy-1011-170.
- ^ a b c d Andersen, A (2006). "Final Report on the Safety Assessment of Sodium p-Chloro-m-Cresol, p-Chloro-m-Cresol, Chlorothymol, Mixed Cresols, m-Cresol, o-Cresol, p-Cresol, Isopropyl Cresols, Thymol, o-Cymen-5-ol, and Carvacrol". International Journal of Toxicology. 25: 29–127. doi:10.1080/10915810600716653. PMID 16835130.
- ^ The British Pharmacopoeia Secretariat (2009). "Index, BP 2009" (PDF). Archived from the original (PDF) on 11 April 2009. Retrieved 29 March 2010.
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help)
- public domain: Chisholm, Hugh, ed. (1911). "Carvacrol". Encyclopædia Britannica (11th ed.). Cambridge University Press. This article incorporates text from a publication now in the