Jump to content

Volcano: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 206.162.182.35 (talk) to last version by Gwernol
Line 69: Line 69:
[[Image:Nur05018.jpg|thumb|left|150px|Pillow lava ([[NOAA]])]]
[[Image:Nur05018.jpg|thumb|left|150px|Pillow lava ([[NOAA]])]]
''[[Submarine volcano]]es'' are common features on the ocean floor. Some are active and, in shallow water, disclose their presence by blasting steam and rocky debris high above the surface of the sea. Many others lie at such great depths that the tremendous weight of the water above them prevents the explosive release of steam and gases, although they can be detected by [[hydrophone]]s and discoloration of water because of [[volcanic gas]]es. Even large submarine eruptions may not disturb the ocean surface. Because of the rapid cooling effect of water as compared to air, and increased buoyancy, submarine volcanoes often form rather steep pillars over their volcanic vents as compared to above-surface volcanos. In due time, they may break the ocean surface as new islands. [[lava|Pillow lava]] is a common eruptive product of submarine volcanoes.
''[[Submarine volcano]]es'' are common features on the ocean floor. Some are active and, in shallow water, disclose their presence by blasting steam and rocky debris high above the surface of the sea. Many others lie at such great depths that the tremendous weight of the water above them prevents the explosive release of steam and gases, although they can be detected by [[hydrophone]]s and discoloration of water because of [[volcanic gas]]es. Even large submarine eruptions may not disturb the ocean surface. Because of the rapid cooling effect of water as compared to air, and increased buoyancy, submarine volcanoes often form rather steep pillars over their volcanic vents as compared to above-surface volcanos. In due time, they may break the ocean surface as new islands. [[lava|Pillow lava]] is a common eruptive product of submarine volcanoes.

ok


===Subglacial volcanoes===
===Subglacial volcanoes===

Revision as of 17:36, 9 November 2006

For other meanings, see Volcano (disambiguation).
"Eruption" redirects here. For other meanings, see Eruption (disambiguation).
Volcano
1. Magma chamber
2. Country rock
3. Conduit (pipe)
4. Base
5. Sill
6. Branch pipe
7. Layers of ash emitted by the volcano
8. Flank
9. Layers of lava emitted by the volcano
10. Throat
11. Parasitic cone
12. Lava flow
13. Vent
14. Crater
15. Ash cloud

A volcano is a rupture in the Earth's surface or crust, allowing hot, usually molten rock, ash, and gases originating deep below the surface to periodically escape. Volcanic activity involving the extrusion of rock tends to form mountains or mountain-like features over time.

Volcanoes are generally found where two to three tectonic plates diverge or converge. The mid-oceanic ridges, like the Mid-Atlantic Ridge, are typical examples of divergent tectonic plates where volcanoes are formed, whereas the Pacific Ring of Fire is a typical example of volcanic activity on convergent tectonic plates. Where two tectonic plates slide past one another (like the San Andreas fault) volcanic activity is generally not found. In zones of prolonged crustal extension and thinning within crustal plates, non-hotspot intraplate volcanism can be caused by decompression of the upper mantle without either of the above processes acting (like in the African Rift Valley, or the European Rhine Graben with its Eifel volcanoes).

Volcanic activity can also occur from mantle plumes, the so-called hotspots, which occur at locations far from plate boundaries; hotspot volcanoes are also found elsewhere in the solar system, especially on its rocky planets and moons.

Locations

Divergent plate boundaries

At the mid-oceanic ridges, two tectonic plates diverge from one another. New oceanic crust is being formed by hot molten rock slowly cooling down and solidifying. In these places, the crust is very thin and eruptions occur frequently because of the pull by the tectonic plates. The main part of the mid-oceanic ridges are at the bottom of the ocean, and most volcanic activity is submarine. Black smokers are a typical example of this kind of volcanic activity. Where the mid-oceanic ridge comes above sea-level, volcanoes like the Hekla on Iceland are formed. Divergent plate boundaries create new seafloor and volcanic islands, such as Cjertce and Hawaii. Sometimes it can form in the ocean.

Convergent plate boundaries

In places where one tectonic plate submerges beneath another, the crust melts and becomes magma. This surplus amount of magma generated in one location causes the formation of the volcano. Typical examples for this kind of volcano are the volcanoes in the Pacific Ring of Fire, and also Mount Etna and Mount Vesuvius .

Hotspots

Hotspots are not located on the ridges of tectonic plates, but on top of mantle plumes, where the convection of Earth's mantle creates a column of hot material that rises until it reaches the crust. The temperature of the plume causes the crust to melt and form pipes, which can vent magma. Because the tectonic plates move whereas the mantle plume remains in the same place, each volcano becomes extinct after a while and a new volcano is then being formed as the plate shifts over the hotspot. The Hawaiian Islands are thought to be formed in such a manner, as well as the Snake River Plain, with the Yellowstone Caldera being the current part of the North American plate over the hotspot.

Petitspots

In July 2006, volcanoes were discovered that did not fit in any of the above-mentioned categories, since they are located far from the plate boundary, but are too small to be the result of a mantle plume.[1] A new theory suggests that submergence of tectonic plates causes stress all over the plate, which causes the plate to crack in some places. However, other scientists believe the mantle plume theory to be incorrect, and consider this discovery a confirmation of their ideas.[2]

Shape

The most common perception of a volcano is of a conical mountain, spewing lava and poisonous gases from a crater in its top. This describes just one of many types of volcano and the features of volcanoes are much more complicated. The structure and behaviour of volcanoes depends on a number of factors. Some volcanoes have rugged peaks formed by lava domes rather than a summit crater, whereas others present landscape features such as massive plateaus. Vents that issue volcanic material (lava, which is what magma is called once it has broken the surface, and ash) and gases (mainly steam and magmatic gases) can be located anywhere on the landform. Many of these vents give rise to smaller cones such as Puʻu ʻŌʻō on a flank of Hawaiʻi's Kīlauea.

Other types of volcanoes include cryovolcanos (or ice volcanoes), particularly on some moons of Jupiter, Saturn and Neptune; and mud volcanoes, which are formations often not associated with known magmatic activity. Active mud volcanoes tend to involve temperatures much lower than those of igneous volcanoes, except when a mud volcano is actually a vent of an igneous volcano.

Shield volcanoes

Toes of a pāhoehoe advance across a road in Kalapana on the east rift zone of Kīlauea Volcano in Hawaiʻi.
Main article: Shield volcano

Hawaiʻi and Iceland are examples of places where volcanoes extrude huge quantities of basaltic lava that gradually build a wide mountain with a shield-like profile. Their lava flows are generally very hot and very fluid, contributing to long flows. The largest lava shield on Earth, Mauna Loa, rises over 9,000 m from the ocean floor, is 120 km in diameter and forms part of the Big Island of Hawaiʻi. Olympus Mons is the largest shield volcano on Mars, and is the tallest known mountain in the solar system. Smaller versions of shield volcanoes include lava cones, and lava mounds.

Quiet eruptions spread out basaltic lava in flat layers. The buildup of these layers form a broad volcano with gently sloping sides called a shield volcano. Examples of shield volcanoes are the Hawaiian Islands.

Cinder cones

Volcanic cones or cinder cones result from eruptions that throw out mostly small pieces of scoria and pyroclastics (both resemble cinders, hence the name of this volcano type) that build up around the vent. These can be relatively short-lived eruptions that produce a cone-shaped hill perhaps 30 to 400 m high. Most cinder cones erupt only once. Cinder cones may form as flank vents on larger volcanoes, or occur on their own. Paricutín in Mexico and Sunset Crater in Arizona are examples of cinder cones.

Stratovolcanoes

In difference to pāhoehoe, Aa is a term of Polynesian origin, pronounced Ah-ah, for rough, jagged, spiny lavaflow

Stratovolcanoes are tall conical mountains composed of lava flows and other ejecta in alternate layers, the strata that give rise to the name. Stratovolcanoes are also known as composite volcanoes. Classic examples include Mt. Fuji in Japan, Mount Mayon in the Philippines, and Mount Vesuvius and Stromboli in Italy.

Super volcanoes

Super volcano is the popular term for large volcanoes that usually have a large caldera and can potentially produce devastation on an enormous, sometimes continental, scale. Such eruptions would be able to cause severe cooling of global temperatures for many years afterwards because of the huge volumes of sulfur and ash erupted. They can be the most dangerous type of volcano. Examples include Yellowstone Caldera in Yellowstone National Park, Lake Taupo in New Zealand and Lake Toba in Sumatra, Indonesia. Supervolcanoes are hard to identify centuries later, given the enormous areas they cover. Large igneous provinces are also considered supervolcanoes because of the vast amount of basalt lava erupted.

Submarine volcanoes

Pillow lava (NOAA)

Submarine volcanoes are common features on the ocean floor. Some are active and, in shallow water, disclose their presence by blasting steam and rocky debris high above the surface of the sea. Many others lie at such great depths that the tremendous weight of the water above them prevents the explosive release of steam and gases, although they can be detected by hydrophones and discoloration of water because of volcanic gases. Even large submarine eruptions may not disturb the ocean surface. Because of the rapid cooling effect of water as compared to air, and increased buoyancy, submarine volcanoes often form rather steep pillars over their volcanic vents as compared to above-surface volcanos. In due time, they may break the ocean surface as new islands. Pillow lava is a common eruptive product of submarine volcanoes.

Subglacial volcanoes

Subglacial volcanoes develop underneath icecaps. They are made up of flat lava flows atop extensive pillow lavas and palagonite. When the icecap melts, the lavas on the top collapse leaving a flat-topped mountain. Then, the pillow lavas also collapse, giving an angle of 37.5 degrees. Very good examples of this can be seen in Iceland. These volcanoes are also called table volcanoes, tuyas or (uncommonly) mobergs.

Erupted material

Lava composition

Another way of classifying volcanoes is by the composition of material erupted (lava), since this affects the shape of the volcano. Lava can be broadly classified into 4 different compositions (Cas & Wright, 1987):

  • If the erupted magma contains a high percentage (>63%) of silica, the lava is called felsic.
    • Felsic lavas (or rhyolites) tend to be highly viscous (not very fluid) and are erupted as domes or short, stubby flows. Viscous lavas tend to form stratovolcanoes or lava domes. Lassen Peak in California is an example of a volcano formed from felsic lava and is actually a large lava dome.
    • Because siliceous magmas are so viscous, they tend to trap volatiles (gases) that are present, which cause the magma to erupt catastrophically, eventually forming stratovolcanoes. Pyroclastic flows (ignimbrites) are highly hazardous products of such volcanoes, since they are composed of molten volcanic ash too heavy to go up into the atmosphere, so they hug the volcano's slopes and travel far from their vents during large eruptions. Temperatures as high as 1,200 °C are known to occur in pyroclastic flows, which will incinerate everything flammable in their path and thick layers of hot pyroclastic flow deposits can be laid down, often up to many meters thick. Alaska's Valley of Ten Thousand Smokes, formed by the eruption of Novarupta near Katmai in 1912, is an example of a thick pyroclastic flow or ignimbrite deposit. Volcanic ash that is light enough to be erupted high into the Earth's atmosphere may travel many kilometres before it falls back to ground as a tuff.
  • If the erupted magma contains 52-63% silica, the lava is of intermediate composition.
  • If the erupted magma contains <52% and >45% silica, the lava is called mafic (because it contains higher percentages of magnesium (Mg) and iron (Fe)) or basaltic. These lavas are usually much less viscous than rhyolitic lavas, depending on their eruption temperature; they also tend to be hotter than felsic lavas. Mafic lavas occur in a wide range of settings:
  • If the erupted magma contains <=45% silica, the lava is called ultramafic. Ultramafic flows are very rare; indeed, it is likely that none have been erupted at the Earth's surface since the Proterozoic, when the planet's heat flow was higher. They are (or were) the hottest lavas, and probably more fluid than common mafic lavas.

Lava texture

Two types of lava are erupted according to the surface texture: ʻAʻa (pronounced IPA [ʔaʔa]) and pāhoehoe (pronounced [paːho͡eːho͡eː]), both words having Hawaiian origins. ʻAʻa is characterized by a rough, clinkery surface and is what most viscous and hot lava flows look like. However, even basaltic or mafic flows can be erupted as ʻaʻa flows, particularly if the eruption rate is high and the slope is steep. Pāhoehoe is characterized by its smooth and often ropey or wrinkly surface and is generally formed from more fluid lava flows. Usually, only mafic flows will erupt as pāhoehoe, since they often erupt at higher temperatures or have the proper chemical make-up to allow them to flow at a higher fluidity.

Volcanic activity

A volcanic fissure and lava channel.
Mount St. Helens shortly after the eruption of May 18, 1980

A popular way of classifying magmatic volcanoes goes by their frequency of eruption, with those that erupt regularly called active, those that have erupted in historical times but are now quiet called dormant, and those that have not erupted in historical times called extinct. However, these popular classifications—extinct in particular—are practically meaningless to scientists. They use classifications which refer to a particular volcano's formative and eruptive processes and resulting shapes, which was explained above.

There is no real consensus among volcanologists on how to define an "active" volcano. The lifespan of a volcano can vary from months to several million years, making such a distinction sometimes meaningless when compared to the lifespans of humans or even civilizations. For example, many of Earth's volcanoes have erupted dozens of times in the past few thousand years but are not currently showing signs of eruption. Given the long lifespan of such volcanoes, they are very active. By our lifespans, however, they are not. Complicating the definition are volcanoes that become restless (producing earthquakes, venting gasses, or other non-eruptive activities) but do not actually erupt.

Scientists usually consider a volcano active if it is currently erupting or showing signs of unrest, such as unusual earthquake activity or significant new gas emissions. Many scientists also consider a volcano active if it has erupted in historic time. It is important to note that the span of recorded history differs from region to region; in the Mediterranean, recorded history reaches back more than 3,000 years but in the Pacific Northwest of the United States, it reaches back less than 300 years, and in Hawaii, little more than 200 years. The Smithsonian Global Volcanism Program's definition of 'active' is having erupted within the last 10,000 years.

Dormant volcanoes are those that are not currently active (as defined above), but could become restless or erupt again. Confusion however, can arise because many volcanoes which scientists consider to be active are referred to as dormant by laypersons or in the media.

Extinct volcanoes are those that scientists consider unlikely to erupt again. Whether a volcano is truly extinct is often difficult to determine. Since "supervolcano" calderas can have eruptive lifespans sometimes measured in millions of years, a caldera that has not produced an eruption in tens of thousands of years is likely to be considered dormant instead of extinct.

For example, the Yellowstone Caldera in Yellowstone National Park is at least 2 million years old and hasn't erupted violently for approximately 640,000 years, although there has been some minor activity relatively recently, with hydrothermal eruptions less than 10,000 years ago and lava flows about 70,000 years ago. For this reason, scientists do not consider the Yellowstone Caldera extinct. In fact, because the caldera has frequent earthquakes, a very active geothermal system (i.e., the entirety of the geothermal activity found in Yellowstone National Park), and rapid rates of ground uplift, many scientists consider it to be an active volcano.

Notable volcanoes

On Earth

Main article: List of volcanoes

The 16 current Decade Volcanoes are:

Elsewhere in the solar system

Olympus Mons (Latin, "Mount Olympus") is the tallest known mountain in our solar system, located on the planet Mars.

The Earth's Moon has no large volcanoes and no volcanic activity, although recent evidence suggests it may still possess a partially molten core.[3] However, the Moon does have many volcanic features such as maria (the darker patches seen on the moon), rilles and domes.

The planet Venus has a surface that is 90% basalt, indicating that volcanism played a major role in shaping its surface. The planet may have had a major global resurfacing event about 500 million years ago,[4] from what scientists can tell from the density of impact craters on the surface. Lava flows are widespread and forms of volcanism not present on Earth occur as well. Changes in the planet's atmosphere and observations of lightning, have been attributed to ongoing volcanic eruptions, although there is no confirmation of whether or not Venus is still volcanically active.

There are several extinct volcanoes on Mars, four of which are vast shield volcanoes far bigger than any on Earth. They include Arsia Mons, Ascraeus Mons, Hecates Tholus, Olympus Mons, and Pavonis Mons. These volcanoes have been extinct for many millions of years[5], but the European Mars Express spacecraft has found evidence that volcanic activity may have occurred on Mars in the recent past as well.[5]

Galileo orbiter reveals volcanic activity on Jupiter's moon Io.

Jupiter's moon Io is the most volcanically active object in the solar system because of tidal interaction with Jupiter. It is covered with volcanoes that erupt sulfur, sulfur dioxide and silicate rock, and as a result, Io is constantly being resurfaced. Its lavas are the hottest known anywhere in the solar system, with temperatures exceeding 1,800 K (1,500 °C). In February 2001, the largest recorded volcanic eruptions in the solar system occurred on Io [6]. Europa, the smallest of Jupiter's Galilean moons, also appears to have an active volcanic system, except that its volcanic activity is entirely in the form of water, which freezes into ice on the frigid surface. This process is known as cryovolcanism, and is apparently most common on the moons of the outer planets of the solar system.

In 1989 the Voyager 2 spacecraft observed cryovolcanos (ice volcanoes) on Triton, a moon of Neptune, and in 2005 the Cassini-Huygens probe photographed fountains of frozen particles erupting from Enceladus, a moon of Saturn.[7] The ejecta may be composed of water, liquid nitrogen, dust, or methane compounds. Cassini-Huygens also found evidence of a methane-spewing cryovolcano on the Saturnian moon Titan, which is believed to be a significant source of the methane found in its atmosphere.[8] It is theorized that cryovolcanism may also be present on the Kuiper Belt Object Quaoar.

Effects of volcanoes

Volcanic "injection"
Solar radiation reduction from volcanic eruptions
Sulfur dioxide emissions by volcanoes.
Average concentration of sulfur dioxide over the Sierra Negra Volcano (Galapagos Islands) from October 23-November 1, 2005

There are many different kinds of volcanic activity and eruptions: phreatic eruptions (steam-generated eruptions), explosive eruption of high-silica lava (e.g., rhyolite), effusive eruption of low-silica lava (e.g., basalt), pyroclastic flows, lahars (debris flow) and carbon dioxide emission. All of these activities can pose a hazard to humans. Volcanic activity is often accompanied by earthquakes, hot springs, fumaroles, mud pots and geysers. Low-magnitude earthquakes often precede eruptions.

The concentrations of different volcanic gases can vary considerably from one volcano to the next. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulphur dioxide. Other principal volcanic gases include hydrogen sulphide, hydrogen chloride, and hydrogen fluoride. A large number of minor and trace gases are also found in volcanic emissions, for example hydrogen, carbon monoxide, halocarbons, organic compounds, and volatile metal chlorides.

Large, explosive volcanic eruptions inject water vapor (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), hydrogen chloride (HCl), hydrogen fluoride (HF) and ash (pulverized rock and pumice) into the stratosphere to heights of 10-20 miles above the Earth's surface. The most significant impacts from these injections come from the conversion of sulphur dioxide to sulphuric acid (H2SO4), which condenses rapidly in the stratosphere to form fine sulfate aerosols. The aerosols increase the Earth's albedo—its reflection of radiation from the Sun back into space - and thus cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. Several eruptions during the past century have caused a decline in the average temperature at the Earth's surface of up to half a degree (Fahrenheit scale) for periods of one to three years. The sulphate aerosols also promote complex chemical reactions on their surfaces that alter chlorine and nitrogen chemical species in the stratosphere. This effect, together with increased stratospheric chlorine levels from chlorofluorocarbon pollution, generates chlorine monoxide (ClO), which destroys ozone (O3). As the aerosols grow and coagulate, they settle down into the upper troposphere where they serve as nuclei for cirrus clouds and further modify the Earth's radiation balance. Most of the hydrogen chloride (HCl) and hydrogen fluoride (HF) are dissolved in water droplets in the eruption cloud and quickly fall to the ground as acid rain. The injected ash also falls rapidly from the stratosphere; most of it is removed within several days to a few weeks. Finally, explosive volcanic eruptions release the greenhouse gas carbon dioxide and thus provide a deep source of carbon for biogeochemical cycles.

Gas emissions from volcanoes are a natural contributor to acid rain. Volcanic activity releases about 130 to 230 teragrams (145 million to 255 million short tons) of carbon dioxide each year. Volcanic eruptions may inject aerosols into the Earth's atmosphere. Large injections may cause visual effects such as unusually colorful sunsets and affect global climate mainly by cooling it. Volcanic eruptions also provide the benefit of adding nutrients to soil through the weathering process of volcanic rocks. These fertile soils assist the growth of plants and various crops. Volcanic eruptions can also create new islands, as the magma dries on the water.

Etymology

Volcano is thought to derive from Vulcano, a volcanic island in the Aeolian Islands of Italy whose name in turn originates from Vulcan, the name of a god of fire in Roman mythology. The study of volcanoes is called volcanology, sometimes spelled vulcanology.

The Roman name for the island Vulcano has contributed the word for volcano in most modern European languages.

Past beliefs

Kircher's model of the Earth's internal fires, from Mundus Subterraneus

Before it was understood that most of the Earth's interior is molten, various explanations existed for volcano behavior. For decades after awareness that compression and radioactive materials may be heat sources, their contributions were specifically discounted. Volcanic action was often attributed to chemical reactions and a thin layer of molten rock near the surface. Many ancient accounts claim that divine intervention was the actual cause of volcanic eruptions.

One early idea counter to this, however, was Jesuit Athanasius Kircher (1602-1680), who witnessed eruptions of Aetna and Stromboli, then visited the crater of Vesuvius and published his view of an Earth with a central fire connected to numerous others caused by the burning of sulfur, bitumen and coal.

See also

Lists

Specific locations

People

References

  • Macdonald, Gordon A., and Agatin T. Abbott. (1970). Volcanoes in the Sea. University of Hawaiʻi Press, Honolulu. 441 p.
  • Ollier, Cliff. (1988). Volcanoes. Basil Blackwell, Oxford, UK, ISBN 0-631-15664-X (hardback), ISBN 0-631-15977-0 (paperback).
  • Haraldur Sigurðsson, ed. (1999) Encyclopedia of Volcanoes. Academic Press. ISBN 0-12-643140-X. This is a reference aimed at geologists, but many articles are accessible to non-professionals.
  • Cas, R.A.F. and J.V. Wright, 1987. Volcanic Successions. Unwin Hyman Inc. 528p. ISBN 0-04-552022-4
  1. ^ N. Hirano, E. Takahashi, J. Yamamoto, N. Abe, S. P. Ingle, I. Kaneoka, T. Hirata, J.-I. Kimura, T. Ishii, Y. Ogawa, S. Machida, K. Suythtrjhyt (2006-04-03). "Volcanism in Response to Plate Flexure". Science. Retrieved 2006-09-04.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ McNutt, Marcia K. (2006-07-20). "Another Nail in the Plume Coffin?". Science. Retrieved 2006-09-04.
  3. ^ M. A. Wieczorek, B. L. Jolliff, A. Khan, M. E. Pritchard, B. P. Weiss, J. G. Williams, L. L. Hood, K. Righter, C. R. Neal, C. K. Shearer, I. S. McCallum, S. Tompkins, B. R. Hawke, C. Peterson, J, J. Gillis, B. Bussey (2006). "The Constitution and Structure of the Lunar Interior". Reviews in Mineralogy and Geochemistry. 60 (1): 221–364. Retrieved 2006-09-05.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ D.L. Bindschadler (1995). "Magellan: A new view of Venus' geology and geophysics". American Geophysical Union. Retrieved 2006-09-04.
  5. ^ a b "Glacial, volcanic and fluvial activity on Mars: latest images". European Space Agency. Retrieved 2006-08-17. {{cite web}}: Text "date-2005-02-25" ignored (help)
  6. ^ Exceptionally Bright Eruption on lo Rivals Largest in Solar System, Nov. 13, 2002
  7. ^ PPARC, Cassini Finds an Atmosphere on Saturn's Moon Enceladus
  8. ^ NewScientist, Hydrocarbon volcano discovered on Titan, 8th June 2005
Volcán Irazú, Costa Rica

Template:Link FA Template:Link FA