Jump to content

NRLMSISE-00: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 1: Line 1:
[[Image:Atmosphere model.png|thumb|right|280px|NRLMSISE output]]
[[Image:Atmosphere model.png|thumb|right|280px|NRLMSISE output]]


'''NRLMSISE-00''' is an [[empirical]], global [[Mathematical model|model]] of the [[Earth's atmosphere]] from ground to space.<ref>{{Cite journal|last=Picone|first=J. M.|last2=Hedin|first2=A. E.|last3=Drob|first3=D. P.|last4=Aikin|first4=A. C.|date=2002-12-01|title=NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues|url=http://onlinelibrary.wiley.com/doi/10.1029/2002JA009430/abstract|journal=Journal of Geophysical Research: Space Physics|language=en|volume=107|issue=A12|pages=1468|doi=10.1029/2002JA009430|issn=2156-2202|bibcode=2002JGRA..107.1468P}}</ref> It models the [[temperature]]s and [[density|densities]] of the atmosphere's components. A primary use of this model is to aid predictions of [[satellite]] orbital decay due to [[atmospheric drag]]. This model has also been used by astronomers to calculate the mass of air between telescopes and laser beams in order to assess the impact of [[laser guide stars]] on the non-lasing telescopes.<ref>Coulson, Dolores M. & Roth, Katherine C., Adaptive Optics Systems II. Edited by Ellerbroek, Brent L.; Hart, Michael; Hubin, Norbert; Wizinowich, Peter L. Proceedings of the SPIE, Volume 7736, pp. 773652-773652-9 (2010)</ref>
'''NRLMSISE-00''' is an [[empirical]], global [[reference atmospheric model]] of the Earth from ground to space.<ref>{{Cite journal|last=Picone|first=J. M.|last2=Hedin|first2=A. E.|last3=Drob|first3=D. P.|last4=Aikin|first4=A. C.|date=2002-12-01|title=NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues|url=http://onlinelibrary.wiley.com/doi/10.1029/2002JA009430/abstract|journal=Journal of Geophysical Research: Space Physics|language=en|volume=107|issue=A12|pages=1468|doi=10.1029/2002JA009430|issn=2156-2202|bibcode=2002JGRA..107.1468P}}</ref> It models the [[temperature]]s and [[density|densities]] of the atmosphere's components. A primary use of this model is to aid predictions of [[satellite]] orbital decay due to [[atmospheric drag]]. This model has also been used by astronomers to calculate the mass of air between telescopes and laser beams in order to assess the impact of [[laser guide stars]] on the non-lasing telescopes.<ref>Coulson, Dolores M. & Roth, Katherine C., Adaptive Optics Systems II. Edited by Ellerbroek, Brent L.; Hart, Michael; Hubin, Norbert; Wizinowich, Peter L. Proceedings of the SPIE, Volume 7736, pp. 773652-773652-9 (2010)</ref>


==Development==
==Development==

Revision as of 00:27, 10 December 2018

NRLMSISE output

NRLMSISE-00 is an empirical, global reference atmospheric model of the Earth from ground to space.[1] It models the temperatures and densities of the atmosphere's components. A primary use of this model is to aid predictions of satellite orbital decay due to atmospheric drag. This model has also been used by astronomers to calculate the mass of air between telescopes and laser beams in order to assess the impact of laser guide stars on the non-lasing telescopes.[2]

Development

The model, developed by Mike Picone, Alan Hedin, and Doug Drob, is based on the earlier models MSIS-86 and MSISE-90, but updated with actual satellite drag data. It also predicts anomalous oxygen.

NRL stands for the US Naval Research Laboratory. MSIS[3] stands for mass spectrometer and incoherent scatter radar, the two primary data sources for development of earlier versions of the model. E indicates that the model extends from the ground through exosphere and 00 is the year of release.

Over the years since introduction, NRLMSISE-00 has become the standard for international space research.[citation needed]

Input and output

The inputs for the model are;

Output of the model is;

See also

References

  1. ^ Picone, J. M.; Hedin, A. E.; Drob, D. P.; Aikin, A. C. (2002-12-01). "NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues". Journal of Geophysical Research: Space Physics. 107 (A12): 1468. Bibcode:2002JGRA..107.1468P. doi:10.1029/2002JA009430. ISSN 2156-2202.
  2. ^ Coulson, Dolores M. & Roth, Katherine C., Adaptive Optics Systems II. Edited by Ellerbroek, Brent L.; Hart, Michael; Hubin, Norbert; Wizinowich, Peter L. Proceedings of the SPIE, Volume 7736, pp. 773652-773652-9 (2010)
  3. ^ "Trademark Status & Document Retrieval". tsdr.uspto.gov. Retrieved 2017-02-10.