Exon: Difference between revisions
li |
Removed first comma (after 'gene') |
||
Line 1: | Line 1: | ||
:''For the energy company see [[Exxon]]'' |
:''For the energy company see [[Exxon]]'' |
||
An '''exon''' is any region of [[DNA]] within a gene |
An '''exon''' is any region of [[DNA]] within a gene that is transcribed to the final [[messenger RNA]] (mRNA) molecule, rather than being [[Splicing_%28genetics%29 |spliced]] out from the [[Transcription_%28genetics%29|transcribed]] RNA molecule. Exons of many eukaryotic genes interleave with segments of non-coding DNA ([[intron]]s). The term ''"exon"'' was coined by [[Walter Gilbert]] in 1978. |
||
== Function == |
== Function == |
Revision as of 21:36, 12 November 2006
- For the energy company see Exxon
An exon is any region of DNA within a gene that is transcribed to the final messenger RNA (mRNA) molecule, rather than being spliced out from the transcribed RNA molecule. Exons of many eukaryotic genes interleave with segments of non-coding DNA (introns). The term "exon" was coined by Walter Gilbert in 1978.
Function
In many genes, each exon contains part of the open reading frame (ORF) that codes for a specific portion of the complete protein. However, the term exon is often misused to refer only to coding sequences for the final protein. This is incorrect, since many noncoding exons are known in human genes (Zhang 1998).
To the right is a diagram of an heterogeneous nuclear RNA (hnRNA), which is an unedited mRNA transcript, or pre-mRNAs. Exons can include both sequences that code for amino acids (red) and untranslated sequences (grey). Stretches of unused sequence called introns (blue) are removed, and the exons are joined together to form the final functional mRNA. The notation 5' and 3' refer to the direction of the DNA template in the chromosome and is used to distinguish between the two untranslated regions (grey).
Some of the exons will be wholly or part of the 5' untranslated region (5' UTR) or the 3' untranslated region (3' UTR) of each transcript. The untranslated regions are important for efficient translation of the transcript and for controlling the rate of translation and half life of the transcript. Furthermore, transcripts made from the same gene may not have the same exon structure since parts of the mRNA could be removed by the process of alternative splicing. Some mRNA transcripts have exons with no ORF's and thus are sometimes referred to as non-coding RNA.
Exonization is the creation of a new exon, as result of mutations in intronic sequences.
Polycistronic messages have multiple ORF's in one transcript and also have small regions of untranslated sequence between each ORF.
Experimental approaches that utilise exons
Exon trapping or 'gene trapping' is a molecular biology technique that exploits the existence of the intron-exon splicing to find new genes. The first exon of a 'trapped' gene splices into the exon that is contained in the insertional DNA. This new exon contains the ORF for a reporter gene that can now be expressed using the enhancers that control the target gene. A scientist knows that a new gene has been trapped when the reporter gene is expressed.
Splicing can be experimentally modified so that targeted exons are excluded from mature mRNA transcripts by blocking the access of splice-directing small nuclear ribonucleoprotein particles (snRNPs) to pre-mRNA using Morpholino antisense oligos. This has become a standard technique in developmental biology. Morpholino oligos can also be targeted to prevent molecules that regulate splicing (e.g. splice enhancers, splice suppressors) from binding to pre-mRNA, altering patterns of splicing.