Jump to content

Magnetic topological insulator: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Various citation & identifier cleanup, plus AWB genfixes (arxiv mostly), added orphan, uncategorised tags
Citation bot (talk | contribs)
m Add: class, eprint, pmid, arxiv, bibcode, volume. Removed parameters. You can use this bot yourself. Report bugs here. | Headbomb
Line 1: Line 1:
{{Orphan|date=December 2018}}
{{Orphan|date=December 2018}}


'''Magnetic topological insulators''' are three dimensional [[Magnet|magnetic materials]] with a non-trivial [[topological index]] protected by a [[symmetry]] other than [[T-symmetry|time-reversal]].<ref>{{cite journal |title=Quantum corrections crossover and ferromagnetism in magnetic topological insulators |last=Bao |first=Lihong |last2=Wang |first2=Weiyi |date=2013 |journal=Scientific Reports |publisher=[[National Center for Biotechnology Information]], [[U.S. National Library of Medicine]] |location=US |pages=2391 |language=en-US |doi=10.1038/srep02391 |pmc=3739003 |pmid=23928713 |last3=Meyer |first3=Nicholas |last4=Liu |first4=Yanwen |last5=Zhang |first5=Cheng |last6=Wang |first6=Kai |last7=Ai |first7=Ping |last8=Xiu |first8=Faxian}}</ref><ref>{{Cite web |url=https://phys.org/news/2018-11-magnetic-topological-insulator-field.html |title='Magnetic topological insulator' makes its own magnetic field |website=phys.org |publisher=[[Phys.org]] |language=en-us |access-date=2018-12-17}}</ref><ref>{{Cite journal|last=Hasan|first=M. Z.|last2=Kane|first2=C. L.|date=2010-11-08|title=Colloquium: Topological insulators|url=https://link.aps.org/doi/10.1103/RevModPhys.82.3045|journal=Reviews of Modern Physics|volume=82|issue=4|pages=3045–3067|doi=10.1103/RevModPhys.82.3045}}</ref> In contrast with a [[Topological insulator|non-magnetic topological insulator]], a magnetic topological insulator can have naturally gapped [[surface states]] as long as the quantizing symmetry is broken at the surface. These gapped surfaces exhibit a topologically protected half-quantized surface [[Hall effect|anomalous Hall conductivity]] (<math>e^2/2h</math>) perpendicular to the surface. The sign of the half-quantized surface anomalous Hall conductivity depends on the specific surface termination.<ref>{{Cite journal|last=Varnava|first=Nicodemos|last2=Vanderbilt|first2=David|date=2018-12-13|title=Surfaces of axion insulators|url=https://link.aps.org/doi/10.1103/PhysRevB.98.245117|journal=Physical Review B|volume=98|issue=24|pages=245117|doi=10.1103/PhysRevB.98.245117}}</ref>
'''Magnetic topological insulators''' are three dimensional [[Magnet|magnetic materials]] with a non-trivial [[topological index]] protected by a [[symmetry]] other than [[T-symmetry|time-reversal]].<ref>{{cite journal |title=Quantum corrections crossover and ferromagnetism in magnetic topological insulators |last=Bao |first=Lihong |last2=Wang |first2=Weiyi |date=2013 |journal=Scientific Reports |volume=3 |pages=2391 |language=en-US |doi=10.1038/srep02391 |pmc=3739003 |pmid=23928713 |last3=Meyer |first3=Nicholas |last4=Liu |first4=Yanwen |last5=Zhang |first5=Cheng |last6=Wang |first6=Kai |last7=Ai |first7=Ping |last8=Xiu |first8=Faxian|bibcode=2013NatSR...3E2391B }}</ref><ref>{{Cite web |url=https://phys.org/news/2018-11-magnetic-topological-insulator-field.html |title='Magnetic topological insulator' makes its own magnetic field |website=phys.org |publisher=[[Phys.org]] |language=en-us |access-date=2018-12-17}}</ref><ref>{{Cite journal|last=Hasan|first=M. Z.|last2=Kane|first2=C. L.|date=2010-11-08|title=Colloquium: Topological insulators|journal=Reviews of Modern Physics|volume=82|issue=4|pages=3045–3067|doi=10.1103/RevModPhys.82.3045|bibcode=2010RvMP...82.3045H|arxiv=1002.3895}}</ref> In contrast with a [[Topological insulator|non-magnetic topological insulator]], a magnetic topological insulator can have naturally gapped [[surface states]] as long as the quantizing symmetry is broken at the surface. These gapped surfaces exhibit a topologically protected half-quantized surface [[Hall effect|anomalous Hall conductivity]] (<math>e^2/2h</math>) perpendicular to the surface. The sign of the half-quantized surface anomalous Hall conductivity depends on the specific surface termination.<ref>{{Cite journal|last=Varnava|first=Nicodemos|last2=Vanderbilt|first2=David|date=2018-12-13|title=Surfaces of axion insulators|journal=Physical Review B|volume=98|issue=24|pages=245117|doi=10.1103/PhysRevB.98.245117|arxiv=1809.02853}}</ref>


== Theory ==
== Theory ==
=== Axion coupling ===
=== Axion coupling ===
The <math>\mathbb{Z}_2</math> classification of a 3D crystalline topological insulator can be understood in terms of the axion coupling <math>\theta</math>. A scalar quantity that is determined from the ground state wavefunction<ref>{{cite journal |last1=Qi |first1=Xiao-Liang |last2=Hughes |first2=Taylor L. |last3=Zhang |first3=Shou-Cheng |title=Topological field theory of time-reversal invariant insulators |journal=Physical Review B |date=24 November 2008 |volume=78 |issue=19 |pages=195424 |doi=10.1103/PhysRevB.78.195424 |url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.78.195424}}</ref>
The <math>\mathbb{Z}_2</math> classification of a 3D crystalline topological insulator can be understood in terms of the axion coupling <math>\theta</math>. A scalar quantity that is determined from the ground state wavefunction<ref>{{cite journal |last1=Qi |first1=Xiao-Liang |last2=Hughes |first2=Taylor L. |last3=Zhang |first3=Shou-Cheng |title=Topological field theory of time-reversal invariant insulators |journal=Physical Review B |date=24 November 2008 |volume=78 |issue=19 |pages=195424 |doi=10.1103/PhysRevB.78.195424 |bibcode=2008PhRvB..78s5424Q |arxiv=0802.3537 }}</ref>


:<math>\theta = -\frac{1}{4\pi}\int_{BZ} d^3k \, \epsilon^{\alpha \beta \gamma} \text{Tr} \Big[ \mathcal{A}_\alpha \partial_\beta \mathcal{A}_\gamma -i\frac{2}{3} \mathcal{A}_\alpha \mathcal{A}_\beta \mathcal{A}_\gamma \Big]</math> .
:<math>\theta = -\frac{1}{4\pi}\int_{BZ} d^3k \, \epsilon^{\alpha \beta \gamma} \text{Tr} \Big[ \mathcal{A}_\alpha \partial_\beta \mathcal{A}_\gamma -i\frac{2}{3} \mathcal{A}_\alpha \mathcal{A}_\beta \mathcal{A}_\gamma \Big]</math> .
Line 23: Line 23:
* Time-reversal <math>T</math>, inversion <math>I</math>: <math>\theta \rightarrow -\theta </math>.
* Time-reversal <math>T</math>, inversion <math>I</math>: <math>\theta \rightarrow -\theta </math>.
The consequence is that if time-reversal or inversion are symmetries of the crystal we need to have <math>\theta = -\theta </math>
The consequence is that if time-reversal or inversion are symmetries of the crystal we need to have <math>\theta = -\theta </math>
and that can only be true if <math>\theta = 0</math>(trivial),<math>\pi</math>(non-trivial) (note that <math>-\pi</math> and <math>\pi</math> are identified) giving us a <math>\mathbb{Z}_2</math> classification. Furthermore, we can combine inversion or time-reversal with other symmetries that do not affect <math>\theta</math> to acquire new symmetries that quantize <math>\theta</math>. For example mirror symmetry can always be expressed as <math>m=I*C_2</math> giving rise to crystalline topological insulators,<ref>{{cite journal |last1=Fu |first1=Liang |title=Topological Crystalline Insulators |journal=Physical Review Letters |date=8 March 2011 |volume=106 |issue=10 |pages=106802 |doi=10.1103/PhysRevLett.106.106802 |url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.106802}}</ref> while the first intrinsic magnetic topological insulator MnBi<math>_2</math>Te<math>_4</math><ref>{{cite arxiv |last1=Gong |first1=Yan |last2=Guo |first2=Jingwen |last3=Li |first3=Jiaheng |last4=Zhu |first4=Kejing |last5=Liao |first5=Menghan |last6=Liu |first6=Xiaozhi |last7=Zhang |first7=Qinghua |last8=Gu |first8=Lin |last9=Tang |first9=Lin |last10=Feng |first10=Xiao |last11=Zhang |first11=Ding |last12=Li |first12=Wei |last13=Song |first13=Canli |last14=Wang |first14=Lili |last15=Yu |first15=Pu |last16=Chen |first16=Xi |last17=Wang |first17=Yayu |last18=Yao |first18=Hong |last19=Duan |first19=Wenhui |last20=Xu |first20=Yong |last21=Zhang |first21=Shou-Cheng |last22=Ma |first22=Xucun |last23=Xue |first23=Qi-Kun |last24=He |first24=Ke |title=Experimental realization of an intrinsic magnetic topological insulator |date=20 September 2018 |arxiv=1809.07926}}</ref><ref>{{cite arxiv |last1=Otrokov |first1=Mikhail M. |last2=Klimovskikh |first2=Ilya I. |last3=Bentmann |first3=Hendrik |last4=Zeugner |first4=Alexander |last5=Aliev |first5=Ziya S. |last6=Gass |first6=Sebastian |last7=Wolter |first7=Anja U. B. |last8=Koroleva |first8=Alexandra V. |last9=Estyunin |first9=Dmitry |last10=Shikin |first10=Alexander M. |last11=Blanco-Rey |first11=María |last12=Hoffmann |first12=Martin |last13=Vyazovskaya |first13=Alexandra Yu |last14=Eremeev |first14=Sergey V. |last15=Koroteev |first15=Yury M. |last16=Amiraslanov |first16=Imamaddin R. |last17=Babanly |first17=Mahammad B. |last18=Mamedov |first18=Nazim T. |last19=Abdullayev |first19=Nadir A. |last20=Zverev |first20=Vladimir N. |last21=Büchner |first21=Bernd |last22=Schwier |first22=Eike F. |last23=Kumar |first23=Shiv |last24=Kimura |first24=Akio |last25=Petaccia |first25=Luca |last26=Di Santo |first26=Giovanni |last27=Vidal |first27=Raphael C. |last28=Schatz |first28=Sonja |last29=Kißner |first29=Katharina |last30=Min |first30=Chul-Hee |last31=Moser |first31=Simon K. |last32=Peixoto |first32=Thiago R. F. |last33=Reinert |first33=Friedrich |last34=Ernst |first34=Arthur |last35=Echenique |first35=Pedro M. |last36=Isaeva |first36=Anna |last37=Chulkov |first37=Evgueni V. |title=Prediction and observation of the first antiferromagnetic topological insulator |date=19 September 2018 |arxiv=1809.07389}}</ref> has the quantizing symmetry <math>S=T*\tau_{1/2}</math>.
and that can only be true if <math>\theta = 0</math>(trivial),<math>\pi</math>(non-trivial) (note that <math>-\pi</math> and <math>\pi</math> are identified) giving us a <math>\mathbb{Z}_2</math> classification. Furthermore, we can combine inversion or time-reversal with other symmetries that do not affect <math>\theta</math> to acquire new symmetries that quantize <math>\theta</math>. For example mirror symmetry can always be expressed as <math>m=I*C_2</math> giving rise to crystalline topological insulators,<ref>{{cite journal |last1=Fu |first1=Liang |title=Topological Crystalline Insulators |journal=Physical Review Letters |date=8 March 2011 |volume=106 |issue=10 |pages=106802 |doi=10.1103/PhysRevLett.106.106802 |pmid=21469822 |bibcode=2011PhRvL.106j6802F |arxiv=1010.1802 }}</ref> while the first intrinsic magnetic topological insulator MnBi<math>_2</math>Te<math>_4</math><ref>{{cite arxiv |last1=Gong |first1=Yan |last2=Guo |first2=Jingwen |last3=Li |first3=Jiaheng |last4=Zhu |first4=Kejing |last5=Liao |first5=Menghan |last6=Liu |first6=Xiaozhi |last7=Zhang |first7=Qinghua |last8=Gu |first8=Lin |last9=Tang |first9=Lin |last10=Feng |first10=Xiao |last11=Zhang |first11=Ding |last12=Li |first12=Wei |last13=Song |first13=Canli |last14=Wang |first14=Lili |last15=Yu |first15=Pu |last16=Chen |first16=Xi |last17=Wang |first17=Yayu |last18=Yao |first18=Hong |last19=Duan |first19=Wenhui |last20=Xu |first20=Yong |last21=Zhang |first21=Shou-Cheng |last22=Ma |first22=Xucun |last23=Xue |first23=Qi-Kun |last24=He |first24=Ke |title=Experimental realization of an intrinsic magnetic topological insulator |date=20 September 2018 |eprint=1809.07926|class=cond-mat.mtrl-sci }}</ref><ref>{{cite arxiv |last1=Otrokov |first1=Mikhail M. |last2=Klimovskikh |first2=Ilya I. |last3=Bentmann |first3=Hendrik |last4=Zeugner |first4=Alexander |last5=Aliev |first5=Ziya S. |last6=Gass |first6=Sebastian |last7=Wolter |first7=Anja U. B. |last8=Koroleva |first8=Alexandra V. |last9=Estyunin |first9=Dmitry |last10=Shikin |first10=Alexander M. |last11=Blanco-Rey |first11=María |last12=Hoffmann |first12=Martin |last13=Vyazovskaya |first13=Alexandra Yu |last14=Eremeev |first14=Sergey V. |last15=Koroteev |first15=Yury M. |last16=Amiraslanov |first16=Imamaddin R. |last17=Babanly |first17=Mahammad B. |last18=Mamedov |first18=Nazim T. |last19=Abdullayev |first19=Nadir A. |last20=Zverev |first20=Vladimir N. |last21=Büchner |first21=Bernd |last22=Schwier |first22=Eike F. |last23=Kumar |first23=Shiv |last24=Kimura |first24=Akio |last25=Petaccia |first25=Luca |last26=Di Santo |first26=Giovanni |last27=Vidal |first27=Raphael C. |last28=Schatz |first28=Sonja |last29=Kißner |first29=Katharina |last30=Min |first30=Chul-Hee |last31=Moser |first31=Simon K. |last32=Peixoto |first32=Thiago R. F. |last33=Reinert |first33=Friedrich |last34=Ernst |first34=Arthur |last35=Echenique |first35=Pedro M. |last36=Isaeva |first36=Anna |last37=Chulkov |first37=Evgueni V. |title=Prediction and observation of the first antiferromagnetic topological insulator |date=19 September 2018 |eprint=1809.07389|class=cond-mat.mtrl-sci }}</ref> has the quantizing symmetry <math>S=T*\tau_{1/2}</math>.


=== Surface anomalous hall conductivity ===
=== Surface anomalous hall conductivity ===

Revision as of 14:06, 19 December 2018

Magnetic topological insulators are three dimensional magnetic materials with a non-trivial topological index protected by a symmetry other than time-reversal.[1][2][3] In contrast with a non-magnetic topological insulator, a magnetic topological insulator can have naturally gapped surface states as long as the quantizing symmetry is broken at the surface. These gapped surfaces exhibit a topologically protected half-quantized surface anomalous Hall conductivity () perpendicular to the surface. The sign of the half-quantized surface anomalous Hall conductivity depends on the specific surface termination.[4]

Theory

Axion coupling

The classification of a 3D crystalline topological insulator can be understood in terms of the axion coupling . A scalar quantity that is determined from the ground state wavefunction[5]

.

where is a shorthand notation for the Berry connection matrix

,

where is the cell-periodic part of the ground state Bloch wavefunction.

The topological nature of the axion coupling is evident if one considers gauge transformations. In this condensed matter setting a gauge transformation is a unitary transformation between states at the same point

.

Now a gauge tranformation will cause , . Since a gauge choice is arbitary, this property tells us that is only well defined in an interval of length e.g. .

The final ingredient we need to acquire a classification based on the axion coupling comes from observing how crystalline symmetries act on .

  • Fractional lattice translations , n-fold rotations : .
  • Time-reversal , inversion : .

The consequence is that if time-reversal or inversion are symmetries of the crystal we need to have and that can only be true if (trivial),(non-trivial) (note that and are identified) giving us a classification. Furthermore, we can combine inversion or time-reversal with other symmetries that do not affect to acquire new symmetries that quantize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \theta} . For example mirror symmetry can always be expressed as giving rise to crystalline topological insulators,[6] while the first intrinsic magnetic topological insulator MnBiTe[7][8] has the quantizing symmetry .

Surface anomalous hall conductivity

So far we have discussed the mathematical properties of the axion coupling. Physically, a non-trivial axion coupling () will result in a half-quantized surface anomalous Hall conductivity () if the surface states are gapped. To see this, note that in general has two contribution. One comes from the axion coupling , a quantity that is determined from bulk considerations as we have seen, while the other is the Berry phase of the surface states at the Fermi level and therefore depends on the surface. In summary for a given surface termination the perpendicular component of the surface anomalous Hall conductivity to the surface will be

.

The expression for is defined because a surface property () can be determined from a bulk property () up to a quantum. To see this, consider a block of a material with some initial which we wrap with a 2D quantum anomalous Hall insulator with Chern index . As long as we do this without closing the surface gap, we are able to increase by without altering the bulk, and therefore without altering the axion coupling .

One of the most dramatic effects occurs when and time-reversal symmetry is present, i.e. non-magnetic topological insulator. Since is a pseudovector on the surface of the crystal, it must respect the surface symmetries, and is one of them, but resulting in . This forces on every surface resulting in a Dirac cone (or more generally an odd number of Dirac cones) on every surface and therefore making the boundary of the material conducting.

On the other hand, if time-reversal symmetry is absent, other symmetries can quantize and but not force to vanish. The most extreme case is the case of inversion symmetry (I). Inversion is never a surface symmetry and therefore a non-zero is valid. In the case that a surface is gapped, we have which results in a half-quantized surface AHC .

Experimental realizations

Magnetically doped topological insulators

Intrinsic magnetic opological insulators

References

  1. ^ Bao, Lihong; Wang, Weiyi; Meyer, Nicholas; Liu, Yanwen; Zhang, Cheng; Wang, Kai; Ai, Ping; Xiu, Faxian (2013). "Quantum corrections crossover and ferromagnetism in magnetic topological insulators". Scientific Reports. 3: 2391. Bibcode:2013NatSR...3E2391B. doi:10.1038/srep02391. PMC 3739003. PMID 23928713.
  2. ^ "'Magnetic topological insulator' makes its own magnetic field". phys.org. Phys.org. Retrieved 2018-12-17.
  3. ^ Hasan, M. Z.; Kane, C. L. (2010-11-08). "Colloquium: Topological insulators". Reviews of Modern Physics. 82 (4): 3045–3067. arXiv:1002.3895. Bibcode:2010RvMP...82.3045H. doi:10.1103/RevModPhys.82.3045.
  4. ^ Varnava, Nicodemos; Vanderbilt, David (2018-12-13). "Surfaces of axion insulators". Physical Review B. 98 (24): 245117. arXiv:1809.02853. doi:10.1103/PhysRevB.98.245117.
  5. ^ Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng (24 November 2008). "Topological field theory of time-reversal invariant insulators". Physical Review B. 78 (19): 195424. arXiv:0802.3537. Bibcode:2008PhRvB..78s5424Q. doi:10.1103/PhysRevB.78.195424.
  6. ^ Fu, Liang (8 March 2011). "Topological Crystalline Insulators". Physical Review Letters. 106 (10): 106802. arXiv:1010.1802. Bibcode:2011PhRvL.106j6802F. doi:10.1103/PhysRevLett.106.106802. PMID 21469822.
  7. ^ Gong, Yan; Guo, Jingwen; Li, Jiaheng; Zhu, Kejing; Liao, Menghan; Liu, Xiaozhi; Zhang, Qinghua; Gu, Lin; Tang, Lin; Feng, Xiao; Zhang, Ding; Li, Wei; Song, Canli; Wang, Lili; Yu, Pu; Chen, Xi; Wang, Yayu; Yao, Hong; Duan, Wenhui; Xu, Yong; Zhang, Shou-Cheng; Ma, Xucun; Xue, Qi-Kun; He, Ke (20 September 2018). "Experimental realization of an intrinsic magnetic topological insulator". arXiv:1809.07926 [cond-mat.mtrl-sci].
  8. ^ Otrokov, Mikhail M.; Klimovskikh, Ilya I.; Bentmann, Hendrik; Zeugner, Alexander; Aliev, Ziya S.; Gass, Sebastian; Wolter, Anja U. B.; Koroleva, Alexandra V.; Estyunin, Dmitry; Shikin, Alexander M.; Blanco-Rey, María; Hoffmann, Martin; Vyazovskaya, Alexandra Yu; Eremeev, Sergey V.; Koroteev, Yury M.; Amiraslanov, Imamaddin R.; Babanly, Mahammad B.; Mamedov, Nazim T.; Abdullayev, Nadir A.; Zverev, Vladimir N.; Büchner, Bernd; Schwier, Eike F.; Kumar, Shiv; Kimura, Akio; Petaccia, Luca; Di Santo, Giovanni; Vidal, Raphael C.; Schatz, Sonja; Kißner, Katharina; Min, Chul-Hee; Moser, Simon K.; Peixoto, Thiago R. F.; Reinert, Friedrich; Ernst, Arthur; Echenique, Pedro M.; Isaeva, Anna; Chulkov, Evgueni V. (19 September 2018). "Prediction and observation of the first antiferromagnetic topological insulator". arXiv:1809.07389 [cond-mat.mtrl-sci].