Talk:Space elevator: Difference between revisions
Eric Kvaalen (talk | contribs) A person can make a graph without having to have a "source" for the values of the parameters! |
|||
Line 1,074: | Line 1,074: | ||
[[User:Eric Kvaalen|Eric Kvaalen]] ([[User talk:Eric Kvaalen|talk]]) 06:38, 12 February 2019 (UTC) |
[[User:Eric Kvaalen|Eric Kvaalen]] ([[User talk:Eric Kvaalen|talk]]) 06:38, 12 February 2019 (UTC) |
||
:What do your [[WP:RS|reliable source]]s use? [[User:Tarl_N.|<b style="color:green">Tarl N.</b>]] ([[User talk:Tarl N.#top|<span style="color:teal">discuss</span>]]) 06:44, 12 February 2019 (UTC) |
:What do your [[WP:RS|reliable source]]s use? [[User:Tarl_N.|<b style="color:green">Tarl N.</b>]] ([[User talk:Tarl N.#top|<span style="color:teal">discuss</span>]]) 06:44, 12 February 2019 (UTC) |
||
::Come off it, Tarl. A person can make a graph without having to have a "source" for the values of the parameters! [[User:Eric Kvaalen|Eric Kvaalen]] ([[User talk:Eric Kvaalen|talk]]) 10:58, 12 February 2019 (UTC) |
::Come off it, Tarl. A person can make a graph without having to have a "source" for the values of the parameters! [[User:Eric Kvaalen|Eric Kvaalen]] ([[User talk:Eric Kvaalen|talk]]) 10:58, 12 February 2019 (UTC) |
||
The result sounds correct this time. As I said above, the integration of the right hand part is in fact the same as the one when the cable is tapered, so you should end up with the same correction factor and the same limit value. |
|||
Now, since the discussion here is not about the value of the free breaking length, but the parameter of a graph, I would suggest to use the 4960 km value given by Clarke in his conference, which is not far from the one just computed, and use the conference as a source. As long as it is of the same order of magnitude (the difference is a few percent, as far as I recall) the profile won't differ significantly from one value to the other ; and the point is not to build a cable with precisely that resistance, but to show the dramatic effect of having but one tenth of it. [[User:Biem|Biem]] ([[User talk:Biem|talk]]) 12:22, 12 February 2019 (UTC) |
Revision as of 12:22, 12 February 2019
International Space Elevator Consortium was nominated for deletion. The discussion was closed on 13 September 2015 with a consensus to merge. Its contents were merged into Space elevator. The original page is now a redirect to this page. For the contribution history and old versions of the redirected article, please see its history; for its talk page, see here. |
This is the talk page for discussing improvements to the Space elevator article. This is not a forum for general discussion of the article's subject. |
Article policies
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Space elevator is a former featured article. Please see the links under Article milestones below for its original nomination page (for older articles, check the nomination archive) and why it was removed. | |||||||||||||
This article appeared on Wikipedia's Main Page as Today's featured article on April 30, 2004. | |||||||||||||
| |||||||||||||
Current status: Former featured article |
This article has not yet been rated on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | ||||||||||||||||||||||||||||||||||||||||||||||||
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
|
This article has sandboxes:
|
|
skyhook is a misnomer?
It seems to me that "skyhook" being an alias for a "Space Elevator" might be a bit of a misnomer, as sky-hook is often used to refer to the apparatus seen in the most recent Batman movie - do we have a reference for "skyhook" in terms of a space elevator? 192.35.35.35 (talk) 19:44, 17 February 2010 (UTC)
- Actually, a 'skyhook' is a fictional device that literally hooks onto the sky itself. Often used in humorous folk stories and jokes initiating apprentices at workplaces. In recent years the name has been used for real devices. Ashmoo (talk) 11:50, 24 February 2011 (UTC)
- The name “Skyhook” to describe the structure of an object in orbit or near-orbit with a cable (of some sort) to the planet below is the proper name; Giuseppe COLOMBO, an Italian Mathematician and engineer, coined the term. A “space elevator” (the thing that goes up and down) is not requisite to the operation of a skyhook.Wikipedia- Best Source Of Information Since The Weekly World News. (talk) 01:56, 3 July 2011 (UTC)Andering J REDDSON
The section that begins as follows has OK analysis but wrong language: "Physical analysis [edit] Apparent gravitational field
In the rotating coordinate system whose origin is at Earth's center and turning with Earth's daily revolution, the acceleration of any static point in the equator's plane is:"
problem 1: if the point is "static" then the acceleration is zero and not the given formula. problem 2: this formula is really referring to the unit force per mass (gravitational force plus centrifugal force). If the unit force is zero then there is no acceleration, so setting this term equal to zero and solving yields the orbital radius at which a free-falling mass is static (in the rotational coordinate frame.) —Preceding unsigned comment added by Burressd (talk • contribs) 21:35, 2 July 2010 (UTC)
Physics section
While the physics section is reasonable, it also appears to be WP:OR. This is an encyclopedia, not a physics class tutorial, so the article should just summarise the findings of physicists on its feasibility. There is no need to walk the reader through the equations, step by step. Ashmoo (talk) 11:52, 24 February 2011 (UTC)
I agree. Even calling it "Physics" is a distraction. "Mechanics" is what people need to understand. While is IS satisfying for one to write that stuff down for one's own understanding, it's more like pedanticism to cram anything more than the basic basics of equations down lay people's throats. All that stuff is really not encyclopedic. Skyway (talk) 03:37, 2 April 2011 (UTC)
- This is not an article in a popular science magazine, it's supposed to be summarising the science according to the literature.Rememberway (talk) 15:05, 2 April 2011 (UTC)
- The purpose of an encyclopedia is to be a reference work. You're supposed to be able to find a complete summary of the topic here. Those equations and the physics is really fundamental; not everything in the Wikipedia is easy; if you don't believe me, check out some of the maths articles ;-).Rememberway (talk) 15:05, 2 April 2011 (UTC)
Yeah. I hear ya. And, I think your point of view is valid. I just disagree for all but the most basic of basic equations (like E=MC^2 or F=ma for example). It's a matter of where the line is drawn probably. On WP, so much of the "complete summary", when it includes equations, is done in a way that disengages the reader's otherwise rapt attention and "drinking in" of the material. So much of it really is a pedantic spewing by some 20-something male grad student. Okay, maybe the "spewing" isn't intentionally pedantic, rather it is an "admirable enthusiasm for the material" by the guy, but the style of the material often reads as pedantic and makes eyes glaze over. Expanding on what Ashmoo said, most equations in WP come off looking like a physics tutorial. It can usually be done better. It's often uncited "original research" too.
The "Apparent gravitational field" equations may fall into the category of basic of basic, but they need to be presented better. What better illustrates my point however, is the "Cable section" differential (differential!!) equations. These are not fundamental for a "complete summary". The fact that taper vastly increases the performance of the cable is fundamental, but the arcane details are not. (Actually, I think a small increase in the taper ratio of a simple linear taper has a much bigger effect than the same ratio turned into one of those "optimized" profiles. But I need to confirm that.) It is of greater importance that the cable will need to be fatter in the high micrometeor/spacejunk region than given for that uber-idealized arcane "perfect taper profile". That thicker section isn't mentioned, and it would drastically change the rest of the shape to be quite unlike the ideal form given. In fact, I think those equations and conclusions are indeed dubious for other reasons as well...
-- No mention is made of taper ratio (except for the changes I had made in the first paragraph of the section),
-- "reduces required strength by a third" is ambiguous.
-- No mention is made for the fact that the lower sections will need to be fatter to support climbers with the same safety margin. (With the focus on making perfect little equations, it got the design criteria all wrong.)
-- Actual cross-section design work will be done numerically anyway.
-- It is uncited and likely to be original research of the kind I've described above.
In other words, dubious.
So, now that you've gotten me thinking more deeply about it, I agree the "Apparent gravitational field" equations are good (with some fixes), but those "Cable section" equations really do need to go. Would you be okay with that? I am confident I can come up with something better about cross section that is well cited with reliable references. :-)
Skyway (talk) 19:06, 2 April 2011 (UTC)
- We need equations about the cable area more than we need equations on the apparent gravity. If I find that there are no equations on this in the article I will revert to a version that has them again. But other than that if you can improve the article in any other way.Rememberway (talk) 19:38, 2 April 2011 (UTC)
That's pretty tough talk, man. I've given thorough, hopefully tone-free, argument as to why the "Cable section" equations are dubious. They are obviously uncited. The same WP:OR complaint has also been issued by at least one other. And you respond with a threat to summarily revert? Without justification? I don't think that's the way you work (I've checked). When I asked if you would be okay with it, I wasn't suggesting that you had go-no-go approval privileges. I was trying to be civil and cooperative, hoping to elicit some reasoned argument. You aren't the owner of this article, don't be trying to force your way by throwing weight around. Justify, dude!
There are two arguments here: 1) The applicability of equations in general, and 2) the validity and inclusion of the equations currently in "Cable section". We can disagree on question 1). Although I generally disfavor equations, I'm not hard-over on it, and I'm not on an anti-equation spree. So, don't worry about that. But, on question 2) I have made good arguments for the non-inclusion of those particular equations. I haven't seen any actual backed-up argument for inclusion. I seem to be supported as well by Ashmoo.
Instead of changing them right away, I'll just tag them "Citation needed" or "Dubious" or some such label if you prefer. Then we can let things settle a bit while others hopefully pipe in. Another alternative is to mention the equations as depicting the "idealized" taper form (like an ideal gas), but that a number of factors will require the design to deviate from this, then go on to talk about those factors and their influence on cross section form. If that were done, the equations would still need to satisfy the other criteria for inclusion (reliable references, etc.).
Yours, Skyway (talk) 22:42, 2 April 2011 (UTC)
- With all respect, "tone-free" after "pedantic spewing by some 20-something male" (!?!), and I think the points made at WP:NOTOR need emphasising here (individual equations should not necessarily be citable nor transparent to lay-readers). I do agree the article is a bit of a mess yet, and appreciate your effort, but I also agree with Rememberway that it could never be an improvement to have no equations here. (Personally I think one problem is that certain equations are given excessive explanation in the text; it would be better to rely instead on better linking to other wiki articles for those readers who need the background foundations explained in detail.) If I recall correctly, Arthur C Clark's article (from the external links section) should suffice to demonstrate that the physics isn't original. Cesiumfrog (talk) 02:51, 6 April 2011 (UTC)
- Okay, I take back the "... by 20-something males" comment. I was referring (only in my own mind apparently) to some studies I had heard about the demographics of WP editors, and to jokes about the aspergery-like proclivities of that population.
- I don't actually advocate "no equations", it's just that equations without (good) explanation are very little communication at all. We technical people understand them (sometimes), but we must put ourselves in the minds of people who aren't inside our own minds. When we don't care about actually communicating, than what results looks a lot like mere showing off. Even E=Mc2 can't sit by itself. If equations must be included (ugh! :-) ), then really good explanation must surround them.
- There could be a section dedicated to the deeper understand (the physics at a physicist’s level), with the rest of the article dedicated to layman understanding. Equally, this section itself can be summarized, then linked to a full article (as is usually done in these cases). Wikipedia- Best Source Of Information Since The Weekly World News. (talk) 02:01, 3 July 2011 (UTC)Andering J REDDSON
Image error
The image says that the elevator should be in a geosynchronous orbit. Actually it should be in a geostationary orbit, which is different. Could somebody fix this please? 67.173.108.82 (talk) 04:30, 8 March 2011 (UTC)
- 3 options: You can edit it yourself. You can show us some documentation for why it should be this way. You can explain it. Both terms are all over this article and I'm no expert on the stuff. The picture says "geosynchronous" so if someone thinks that's wrong we need to know why and find a better picture. I could easily edit the picture and re-upload it if I had a reasonable expectation not to mess up the science behind this page. Pär Larsson (talk) 11:50, 10 March 2011 (UTC)
Once it's anchored, I'm not so sure it can be said to be in any type of orbit. It's just an upsidedown pendulum at that point. Only during initial deployment will it need to be in Geostationary orbit. Actually, when you think about it, that's true only during the last 80 miles or so when the bottom dips into the atmosphere. If we have the ability to adroitly maneuver the whole thing when it's fully extended (~100,000 km), then there isn't even a need to be geostationary/geosynchronous at all during deployment. Indeed, we will need at least some kind of maneuverability during deployment, that means some of the time the system won't be exactly geostationary. Skyway (talk) 00:59, 2 April 2011 (UTC)
I fixed it with the new improved diagram I uploaded about 12 hours ago. It now says "Geostationary". Skyway (talk) 19:28, 2 April 2011 (UTC)
Problems with the main (first) diagram.
The main picture/diagram has a few flaws:
1) The scale isn't right. It is easy to get the ratio between the GEO level height above the surface and the Earth radius correct. That ratio is about 5.62 by the way. It should be a simple matter to make the Earth a little smaller.
2) The center of mass of the system at all times must be at least somewhat above the GEO level. The diagram shows the center of mass to be at GEO level. The arrow pointing to GEO needs to be scooted up a bit.
3) Modern (post Edwards-Westling) concepts don't use an asteroid as a counterweight. The diagram shows something that looks like an asteroid.
If no one makes the fixes in the next week or so, I will have a go at it. It is pretty important I think. The association of space elevators with GEO isn't as significant as most think. We tend to frequently invoke the idea of "dropping a massless line from a satellite at GEO" to explain, but that misleads people to give undue significance to GEO in the idea of space elevators. It also leaves the idea of "pulling a space elevator down" nagging in the minds of novices, as if that really could happen in a properly managed system. It would happen immediately however, in the system illustrated in that diagram. The CM being above GEO, even when under load, and providing a margin of "excess tension" is an essential element of the concept. That's why it should be correctly illustrated in that diagram.
Skyway (talk) 06:58, 1 April 2011 (UTC)
I couldn't wait a few days. I went ahead and made the above changes along with the relabeling of "Geosynchronous orbit" to "Geostationary orbit" as was also suggested. I still need to correct an error I made with regard to the Name header. I had incorporated it into the picture then saw that it was a part of the infobox and taking up space even if I nulled it out. I will edit the diagram to remove the name, then restore the Name as part of the infobox as it was before.
Skyway (talk) 09:37, 2 April 2011 (UTC)
While the length of the cable may be to scale, the size of the chamber and counterweight most certainly aren't. The figure caption should be updated to reflect this. — Preceding unsigned comment added by 203.206.172.171 (talk) 01:54, 14 July 2012 (UTC)
Strength of materials comparisons
This space elevator article (and the carbon nanotube article it is partially based on) may be misleading on just comparing the strength of individual carbon nanotubes, atoms wide and defect free, to the aggregate strength of macro scale materials like commercial steel, kelvar, etc. See, for instance, monocrystalline whisker:
Typical whisker materials are graphite, alumina, iron, or silicon. Single-crystal whiskers of these (and some other) materials are noted for having very high tensile strength (on the order of 10–20 GPa). Whiskers are used in some composites, but large-scale fabrication of defect-free whiskers is very difficult. Prior to the discovery of carbon nanotubes, single-crystal whiskers had the highest tensile strength of any materials known, and were featured regularly in science fiction as materials for fabrication of space elevators, arcologies, and other large structures.
Many materials (iron, carbon graphite, silicon, etc.) can have around an order of magnitude higher strength in submicroscopic test samples than those materials do in practice on large scale for the macro-scale aggregate of quintillions of atoms, defects and all (where, in contrast, strengths drop to a fraction of a GPa to low single-digit GPa instead of the 10-20 GPa for the single-crystal whiskers).
Likewise, google any carbon nanotube composite or even carbon nanotube rope (of fraction of a millimeter or greater diameter) made in the decades since their discovery, and measured strengths range from a fraction of a GPa to single-digit GPa. The up to 50-150 GPa mentioned in the articles for test results is only for individual nanotubes, but very few people will learn the magnitude of the difference. Indirectly encouraging a space policy of waiting for CNT materials to hopefully later in our lifetimes get nearly the same strength on the aggregate macro scale that the best atoms-wide samples do (which has not happened with other materials) may be disadvantageous if the validity of the implicit assumptions behind such is in question.
24.253.194.197 (talk) 7 May 2011 (UTC)
- This isn't such a ridiculous statement as you make it out to be. If we were to assume that the current, nascent, state of CNT production and technology were to be the technical limit, it would be akin to declaring that pearlite and martensite were the best you could possibly do with steel, and deciding you might as well not bother. The article does say that this is new technology, and that these are expected but not extant material candidates. siafu (talk) 23:31, 12 August 2011 (UTC)
Has the effect of ultraviolet radiation and exposure to ionized forms of oxygen, nitrogen and NO on ribbon material been adequately examined?184.66.110.161 (talk) 03:20, 15 March 2012 (UTC)
- That's the wrong question. We don't have the material yet, so technically of course that hasn't been conclusively examined. But if it were going to be a problem, we could simply increase the cross section sufficiently to support just adding an arbitrarily thick layer of shielding to eliminate it. Producing a material of very high strength on a macroscopic scale really is the one and only issue of importance here, everything else is ammenable to trivial work arounds. Cesiumfrog (talk) 03:39, 15 March 2012 (UTC)
- I agree that getting the material strength-to-density in the first place is the primary concern, but I wouldn't say it's the wrong question. The answer to the question is "Yes". I would say it's been "adequately examined" for the current state of development. That is, practitioners know it is necessary to design for the environment and that that is one aspect of the environment that's been looked at (see Edwards Westing Phase Two). It's not expected to be too much of a problem. Like Cesiumfrog said, it looks amenable to "trivial work arounds" or as I would put it "routine design to given constraints" (or something like that). Skyway (talk) 17:37, 26 March 2012 (UTC)
Center of mass vs center of weight
My change was reverted. The article currently states: "Once anchored, if the center of mass is moved upward to be above the level of geosynchronous orbit (by adding mass at the upper end or by paying out more cable), it will add a tension to the whole cable, which can then be used as an elevator cable."
This makes no sense. The center of mass is always above GEO once the cable is played out because centrifugal forces will require more mass above GEO to balance the gravitational forces below GEO. The correct term should be "center of weight" — Preceding unsigned comment added by Nydoc001 (talk • contribs) 23:39, 12 August 2011 (UTC)
- I was the one who reverted and believe this is a matter of properly formulating (what weights are being described). "Center of weight" is just not used in physics, but center of mass is a standard term. Materialscientist (talk) 23:47, 12 August 2011 (UTC)
- I don't think it's the correct term in this instance. A much larger percentage of the cable mass will be above GEO, but if you look at the weight pulling down versus the weight pulling up it will be very close to 50/50. Should the article use "center of weight" if it's the correct term but also more confusing? — Preceding unsigned comment added by Nydoc001 (talk • contribs) 00:13, 13 August 2011 (UTC)
- "Center of gravity" is a commonly used term in engineering, perhaps this is more illustrative of the reality. siafu (talk) 00:23, 13 August 2011 (UTC)
- I think "center of gravity" would make sense here. If you think the mass below GEO providing "downward gravity" and the mass above GEO providing "upward gravity" then the gravitating sections of cable will be opposed with the center of gravity being slightly above GEO. — Preceding unsigned comment added by Nydoc001 (talk • contribs) 00:57, 13 August 2011 (UTC)
- Ah, you mean to include the force direction. Center of gravity is indeed a common term. Materialscientist (talk) 01:02, 13 August 2011 (UTC)
- Excellent! I'll make the change now then to say center of gravity. — Preceding unsigned comment added by Nydoc001 (talk • contribs) 01:09, 13 August 2011 (UTC)
- By the way, the image at the top should say "Center of gravity for cable (above geostationary level)" instead of "Center of mass for system (above geostationary level)." I could edit the image to fix this, but I don't know how to upload it. Nydoc001 (talk) 01:17, 13 August 2011 (UTC)Nydoc001
- Ah, you mean to include the force direction. Center of gravity is indeed a common term. Materialscientist (talk) 01:02, 13 August 2011 (UTC)
- I think "center of gravity" would make sense here. If you think the mass below GEO providing "downward gravity" and the mass above GEO providing "upward gravity" then the gravitating sections of cable will be opposed with the center of gravity being slightly above GEO. — Preceding unsigned comment added by Nydoc001 (talk • contribs) 00:57, 13 August 2011 (UTC)
- No. This isn't a matter of the same term for different things, center of gravity and center of mass are different points. Unless you have a reference, I don't think it should be changed.- Sheer Incompetence (talk) Now with added dubiosity! 01:50, 13 August 2011 (UTC)
- In fact, center of gravity isn't always a well defined point, whereas center of mass is easy to calculate.- Sheer Incompetence (talk) Now with added dubiosity! 01:50, 13 August 2011 (UTC)
- They're only the same point if gravity is constant, but it's not because it's so big.- Sheer Incompetence (talk) Now with added dubiosity! 01:53, 13 August 2011 (UTC)
- Well I'll try to find a reference for you. I'm sure I remember seeing it in either Bradley Edward's or Jerome Pearson's papers, but I know for a fact that we can't be talking about either the center of mass of the cable or the center of mass of the earth-cable system. Those are at different locations than GEO. Nydoc001 (talk) 01:59, 13 August 2011 (UTC)Nydoc001
- I found some references:
- Space Elevators - An Advanced Earth-Space Infrastructure for the New Millennium
- Compiled by D.V. Smitherman, Jr.
- Marshall Space Flight Center, Huntsville, Alabama, August 2000.
- http://www.spaceelevator.com/docs/elevator.pdf
- In this paper, Smitherman does say the GEO station is the center of gravity of the system:
- "At the GEO transfer station (fig. 2(d)), passengers and cargo are transferred into the station or to outbound space transfer vehicles. This station is the center of gravity for the total system; consequently, large reels are illustrated to adjust the location of the station, tension of the structure, and the counterbalance mass."
- However, Smitherman seems to use the terms "center of gravity" and "center of mass" interchangeably:
- "A space elevator is a physical connection from the surface of the Earth to a geostationary Earth orbit (GEO) above the Earth ≈35,786 km in altitude. Its center of mass is at the geostationary point such that it has a 24-hr orbit and stays over the same point above the equator as the Earth rotates on its axis."
- Dr. Bradley Edwards comments on the complications of gravity when altering the center of mass:
- "A second fact that complicates our calculations is that as the cable is deployed different parts of it experience different gravitational acceleration. This changes our apparent mass distribution and if we want to maintain a geosynchronous orbit during deployment we must dramatically increase our orbital angular momentum. In our specific situation the geosynchronous orbit altitude for our center of mass depends on how much cable we have deployed."
- The Space Elevator: Phase I Study
- Bradley C. Edwards, Ph.D.
- http://www.spaceelevator.com/docs/472Edwards.pdf
- If you take a look at the wikipedia article for Center of gravity, there is a section about weighted average which states "Asimov (1988) writes that a body in the earth's gravitational field has a center of gravity that is lower than its center of mass, because its lower portion is more strongly influenced by the earth's gravity." This is exactly what's going on with the space elevator. The center of mass is closer to the counterweight, but the center of gravity is nearly at GEO because of earth's gravity.
- As the article currently stands, it contains the terms "center of mass," "center of gravity," and "center of weight." I don't think it should use "center of weight" because it isn't a physics term. The only term that should be used when describing the point slightly above GEO is "center of gravity" because it is most accurate. Nydoc001 (talk) 04:15, 13 August 2011 (UTC)Nydoc001
- No, it's actually, categorically, wrong. The centre of gravity is a long way below geo, since most of the gravity is quite near the earth, so the centre of gravity is near there (I've never done the maths on it, but it must be a few thousand kilometres up). The centre of mass is slightly above geo, as Bradley notes.- Sheer Incompetence (talk) Now with added dubiosity! 05:17, 13 August 2011 (UTC)
- If you're thinking of the center of gravity of the earth-cable system, it would be almost exactly at the center of the earth. The final mass of Edward's ribbon, including the counterweight is 1500 tons and the mass of the earth is 6.585x10^21 tons so the cable and counterweight masses hardly make a difference. What makes sense to talk about are the centers of mass and gravity of just the cable. Only a quarter of the cable's length is below GEO. The other three quarters are above GEO. This puts the center of mass of the cable far, far above GEO, but because a body that is in a gravitational field has a center of gravity that is lower than it's center of mass, the center of gravity of the cable will be just above GEO. This is the balance point of forces pulling down and forces pulling up, so it's the center of gravity. Nydoc001 (talk) 05:46, 13 August 2011 (UTC)Nydoc001
- No, it's actually, categorically, wrong. The centre of gravity is a long way below geo, since most of the gravity is quite near the earth, so the centre of gravity is near there (I've never done the maths on it, but it must be a few thousand kilometres up). The centre of mass is slightly above geo, as Bradley notes.- Sheer Incompetence (talk) Now with added dubiosity! 05:17, 13 August 2011 (UTC)
- If the "centre of mass" and "centre of weight" of the cable are at different locations then the article needs to say so. Particularly if the difference has to be allowed for during construction and for safe operation of the space elevator. Include definitions. Andrew Swallow (talk) 20:34, 15 August 2011 (UTC)
- They would be at different locations. The balance point of upward forces and downward forces (you said "center of weight" but you could say "the elevator's center of gravity") by necessity needs to be slightly above GEO. The altitude of the center of mass will vary depending on how big the counterweight is. For example:
- Assuming a ribbon taper ratio from base to GEO of 1.5 and the ribbon having sufficient length above GEO that it doesn't require a counterweight:
- If the "centre of mass" and "centre of weight" of the cable are at different locations then the article needs to say so. Particularly if the difference has to be allowed for during construction and for safe operation of the space elevator. Include definitions. Andrew Swallow (talk) 20:34, 15 August 2011 (UTC)
- 143,800 km - total length of ribbon
- 35,786 km - height at GEO
- 250.7 cm - final ribbon thickness at GEO
- 167.1 cm - final ribbon thickness at base and terminal point
- 0.002089 * 35786 = 74.756954 km^2 - surface area of ribbon below GEO
- 0.002089 * 108014 = 225.641246 km^2 - surface area of ribbon above GEO
- This means that a cable with maximum possible length would have approximately 25% of it's mass below GEO and 75% of it's mass above GEO. Therefore the maximum possible altitude for the center of mass should be somewhere around 70,000 km.
- Blaise Gassend has a page that talks about the center of mass for space elevators: http://gassend.net/spaceelevator/center-of-mass/index.html
- Nydoc001 (talk) 05:18, 16 August 2011 (UTC)Nydoc001
I like that this subject has come up and I applaud Nydoc001 for having the courage to see that we get it right. I myself ponder over the correctness of CG vs. CM (or some other kind of "center") for space elevators. I'm airplane guy, and I'm used to CG and CM being interchangeable. Clearly, for space elevators, they are not. I've adopted the probably-correct convention of using "CM" as the place where, if all the mass of the free-flying very tall satellite (such as during deployment) were concentrated, the relevant orbital parameters (such as period) would be unchanged. But, I am unsure of this because I haven't yet sat down and worked it out for myself. The community of serious practitioners do use CM to describe that point and I have reason to trust them, but I won't have absolute trust in it until I get around to figuring it out myself!
CG vs. CM is important to get right. An actual explanation of the meanings and differences might be off-topic for this article, but the example of a space elevator might be right-on for the CG and CM articles.
Skyway (talk) 20:49, 18 August 2011 (UTC)
- The gravity of Earth is about 100 times stronger at sea level than at altitude 54,000 kilometers (60,000 km from the center of the earth), so it would take more mass beyond GEO altitude to counter balance the mass below GEO altitude.
- There is a balancing point. The balancing point is the point for which the total force on the mass above that point (mass times (centripetal acceleration - gravitational acceleration)) is balanced by (equal to) the total force on the mass below that point (mass times (gravitational acceleration - centripetal acceleration)). The balancing point should be slightly above GEO so you could have a natural 20 ton upward force and not pull it out of the sky when you put a 15 ton climber on it. Could you call this point "the cable's center of gravity" or is there really no common physics term for this point?
- The only reference I could find talking about this is Blaise Gassend's Paper which is already listed in the article's references: http://gassend.net/spaceelevator/center-of-mass/index.htmlNydoc001 (talk) 21:01, 18 August 2011 (UTC)Nydoc001
Neato. I've come across Blaise Gassend's site before and found him to be very reliable. Yes, when anchored and operational, the "balance point" (whether it is a "CG", "CM", or other "center" -- "CM" for now) will need to be above GEO to provide "excess tension", or "ultimate lifting capacity", or "pull-down margin" - that 20 ton upward force you mention. So, things are different pre-anchored vs. post-anchored. During deployment, the system is in orbit. While anchored and operational, it is not in orbit, not one bit of it. During deployment, the "balance point" (presumably "CM") will need to be exactly at GEO level and over the equator if the deploying system is to remain over the anchor point. Personally, I'm not sure it needs to be perfectly stationary over the anchor point during deployment. Technically, such positioning is only really necessary during the last 100 km of the lowering of the lower "transponder" end. During deployment, we may want to let it precess East or West or let it increase or decrease it's period for whatever reasons we have at the time.
Skyway (talk) 21:35, 18 August 2011 (UTC)
- If you're going for accuracy, you could say "center of gravity adjusted for centripetal acceleration" (that's a mouthful! CGACA?). I don't think "center of mass" is accurate, but would "center of balance" cause less confusion?Nydoc001 (talk) 21:21, 19 August 2011 (UTC)Nydoc001
- This might be a better explanation of why the balance point is not the center of mass:
- The "center of balance" is the point at which the net force acting on the elevator mass below that point is equaled by the net force acting on the elevator mass above that point.
- Since we want the whole elevator to have a 20 ton pull-down margin, we put the center of balance slightly above GEO (an elevator having a net downward force would have it's center of balance below GEO).
- But the center of mass isn't anywhere near GEO! This is because gravity increases faster exponentially as you go downward than does centripetal acceleration as you go upward. A given elevator mass below GEO will have a stronger net downward force than the net upward force acting on an equivalent elevator mass above GEO. You'll have to compensate for gravity by placing a much larger cable mass above GEO, in order to provide yourself with more centripetal acceleration. This is why you end up with your center of mass being perhaps 10,000 km above the center of balance.Nydoc001 (talk) 03:12, 20 August 2011 (UTC)Nydoc001
I'm starting to suspect you are right. THE reliable reference ("The Space Elevator" by Edwards and Westling) refers to the CM being at GEO during deployment for the system to remain stationary over a spot above the equator. But, I "did the math" last night and it looks like the point that needs to be at GEO is somewhere below CM and above CG. I did this analysis very quickly and I'm still in the process of verifying it, so definitely don't hold me to it! I suggest we keep the article saying "CM" for the time being. Even if you are right, I think the difference is probably small, and the correct idea still gets across. If we took our study and published it here it would clearly amount to original research, which is verboten in WP. It's definitely a cool thing to think about though.
Skyway (talk) 19:20, 20 August 2011 (UTC)
I just re-read that reference you mentioned (http://gassend.net/spaceelevator/center-of-mass/index.html) with new eyes. He confirms that the CM is above GEO even for an un-anchored (deploying, synchronous) SE. Now we can carefully review the text with this reference in our back pocket for misuse of "CM" where it implies that CM is at GEO during deploy. We don't need to go on to actually name that point though (unless there is a source for it). As an article about SEs and not a textbook about them, we don't actually have to go into that detail.
Skyway (talk) 05:41, 21 August 2011 (UTC)
Eureka! I've found the missing link! The trouble we-all have been having is with the common use of "center of mass" in describing what's at geosynchronous orbit level. The modern-day bible (Edwards-Westling, "The Space Elevator") consistently uses this term, but we know that the CM must be above GEO if the period of a deploying system is to be one (sidereal) day. "How could the man get it wrong?" we all wonder. Well, check out the top half of page 72 of that reference:
"In our specific situation the geosynchronous orbit altitude for our center of mass depends on how much ribbon we have deployed."
So, Edwards redefines GEO level in some contexts to depend on the vertical mass distribution of very tall satellites. He is right, and we are technically correct to use "CM", but only if we make it clear that we are also using a variable definition of GEO. The big problem is that this subtlety is lost on most readers and editors, even non-lay readers/editors! So, too frequently, in fact almost always, people end up just describing the center of mass to be at the "normal" GEO level and not thinking about it too much - until someone (like Nydoc001) comes along and says "Hey! the emperor has no clothes!".
I suggest that this article picks only one method of describing the situation and keeps it consistent, lest we continue to confuse readers (and ourselves!).
Method A) Define "GEO" as non-varying and never state or imply that CM is at GEO, but is in fact above GEO for a deploying (yet un-anchored) system. Maybe we should put some hidden notes in the text warning future editors to not misinterpret Edwards' use of "CM at GEO".
Method B) Allow CM to be described as being at GEO for a deploying system as long as it is always clear that the "GEO" referred to in that context is not at the same level as "normal GEO".
I strongly favor Method A because "GEO" not being at the "normal" altitude is only applicable during deployment. In almost all other situations, such as normal use of a SE, GEO is right back at the normal level (where it belongs!). It would be confusing to let GEO move sometimes and not move other times.
Skyway (talk) 19:08, 22 August 2011 (UTC)
Center of what? :-)
I read Nydoc001's short-term edit with the short-lived new section (2 edits ago?) and it made me realize that there can be confusion as to exactly what objects are included in whatever we are considering the center of mass of. Here is the answer (I do declare! :-) ) :
During deployment the system includes:
1) The concentrated mass at the top, i.e. the spool including the portion of undeployed tether on it. When fully deployed, this mass along with additional mass added to it, is called the counterweight.
2) The thus-far deployed tether.
3) The concentrated mass at the bottom of the tether. I call this the "lower counterweight". It is the smaller spacecraft containing transponder for location, and rocketry for initial deployment (which is necessary until tidal forces can keep the tether taut). The mass of the transponder & rocketry will slightly pre-tension the tether. Additional "dead weight" might be added to further pretension the tether.
At the exact moment the "lower counterweight" is grabbed and affixed to the Earth, it becomes not part of the "system", and instantly the CM moves upward. This is somewhat mere re-definition (!), but not fully because the lower counterweight does transition from being free-flying as a part of a "tall satellite" to not being part of it and being fixed to the ground and constrained in it's movements. At this moment, the rest of the "tall satellite" (upper CW and tether) is no longer "in orbit" either (!), so it is also no longer a satellite because it is also constrained in it's movements (at the bottom) - an important point. At the moment the lower counterweight is grabbed, the tension that was on the tether just above the lower counterweight becomes the "excess tension"/"pull-down margin" of the system. This initial "excess tension" equals the weight of what was the "lower counterweight". After anchoring, as the spool continues with its remaining deployment upward, that initial "excess tension" at the bottom increases until the spool is fully deployed. With this now-greater "excess tension", the lower part of the tether can hold the first climbers.
While anchored to the ground the system includes:
1) The counterweight.
2) The tether.
3) All mass attached to the tether such as climbers, stations, etc.
When anchored, the system doesn't include that "lower counterweight" that was so important during deployment.
There you go everybody. Just wanted to clarify that point of confusion.
Skyway (talk) 23:12, 18 August 2011 (UTC)
- When anchored, the system has to include either the Earth (which it is anchored to) or the force being provided by the Earth extending out of the control volume both as a body force (gravity) and as a point force (tension), otherwise it doesn't really gain much in terms of it's usefulness as an arbitrarily defined system. siafu (talk) 01:14, 19 August 2011 (UTC)
- You should consider Earth's gravitational force when locating the elevator's center of gravity, but you wouldn't need to include the Earth's mass into the system when locating the center of mass. Typical skyscrapers have a center of mass (very important when planning for earthquakes) but the Earth's mass isn't included to find a skyscraper's center of mass. The CG and CM of a skyscraper are very close together, but a space elevator is so tall that these points would be very far apart. For an elevator having the longest possible tether and smallest possible counterweight they could be as far apart as 36,000 km. Even for shorter tethers they will still be thousands of kilometers apart.Nydoc001 (talk) 01:27, 19 August 2011 (UTC)Nydoc001
By "the system" I meant the collection of things that we are talking about the center of (gravity, mass, or whatever) of. I should have been more clear about that. Which kind of "center" wasn't my purpose. What "the system" should mean in this context was also not my purpose. I wanted to provide the practical information to you all that, when active modern practitioners say "CM", the control volume (CV) they are referring to is the CV I describe above.
Skyway (talk) 05:31, 19 August 2011 (UTC)
- Any spacecraft that attached itself to the elevator would become part of the system, but if they attach at GEO altitude they will be in free fall with zero weight and so not add any additional force or tension to the tether. You could theoretically add infinite mass at GEO altitude without altering the tether's profile.Nydoc001 (talk) 20:07, 19 August 2011 (UTC)Nydoc001
- Were I not an astrodynamicist, I would not feel compelled to object, but alas I must point out that a large mass at GEO would be problematic due to its gravitational effects, as well as the more serious effects on the structure's overall oscillatory behavior. siafu (talk) 20:51, 19 August 2011 (UTC)
- You have a very valid point. Infinite point mass would be a problem for the universe as a whole. But I'm sure you could get away with attaching something with mass equal to a few dozen times the ISS at a space elevator's GEO without causing too adverse an effect. I think the change in oscillatory behavior would be the most noticeable effect. — Preceding unsigned comment added by Nydoc001 (talk • contribs) 21:05, 19 August 2011 (UTC)Nydoc001
- Any spacecraft that attached itself to the elevator would become part of the system, but if they attach at GEO altitude they will be in free fall with zero weight and so not add any additional force or tension to the tether. You could theoretically add infinite mass at GEO altitude without altering the tether's profile.Nydoc001 (talk) 20:07, 19 August 2011 (UTC)Nydoc001
Hi guys, I composed this while you were "talking", then had an edit conflict. I was responding to Nydoc001's 20:07 comment, but it applies to siafu.20:51 and Nydoc001.21:05 too...
Nydoc001, (your 20:07 comment) is true for the static situation, and true for the situation we are/were talking about with regard to the "balance point" being above GEO and all that. (For the dynamic situation, as in the contemplation of oscillations, any mass attached at GEO will definitely be material. But, dynamics is outside the topic for now. :-) ) Hmmm... let me think about that static (vertical) situation some more... I'm thinking you make a very good mind-expanding point. Now that I think about it, if a very very large mass (order of the whole SE) was just parked next to and not touching a cable at GEO, it is no different statically than if it was attached to the cable at GEO. The "excess tension"/"pull-down margin" will not change (just like you suggested). The CM will still be above GEO, but less so. Hmmm... Dang, you're making me think...
Okay, I have an answer for what it's worth. Here it is:
The distance from GEO upward to the center of mass is not a direct measure of resistance to being pulled down. That distance must be compensated somehow for mass (and maybe other factors) for it to be a measure of pull-down margin.
SO, what we are saying in the article is still true with regard to the CM being above GEO. The (above) descriptions of CV also still hold true. That large mass attached at GEO is in the CV when it is attached and is not in the CV when not attached, just like the CV definitions I described above. The pull-down margin is not changed even though the center of mass is changed (!). It's just that the amount that CM is above GEO is not a direct measure of pull-down margin. In the non-attached case, the distance from GEO to CM is compensated for by a lesser mass. In the attached case, the distance from GEO to CM is compensated for by a greater mass. In both cases, when compensated for mass, the pull-down margin will be the same. This makes sense because, at GEO, attaching adds no vertical force.
I think you've moved the bar, man. Space elevator engineering is a little further advanced today. (Seriously! :-) )
Skyway (talk) 21:36, 19 August 2011 (UTC)
Little mistype?
Should the phrase "transit times are expected to be long enough where, if unshielded, total exposure would be above levels considered safe." be rather "transit times are expected to be long enough where, if unshielded, total exposure would be above levels considered unsafe."? — Preceding unsigned comment added by 175.39.42.46 (talk) 10:18, 29 March 2012 (UTC)
- In this case 'above' goes with 'safe', and means the radiation is dangerous. Andrew Swallow (talk) 18:14, 29 March 2012 (UTC)
Some phrases in the "21st century" section are in a different font and without spaces. For example "which featured US500,000awardsforeachofthetwocompetitions,(US1,000,000 total)". I can't see what it's caused by and do not find manual editing reliable enough to re-type the text without typos. What is the problem here, exactly? --Gryllida 02:07, 22 May 2012 (UTC)
- Hmmm... I checked and my browser shows it looking normal. I have Firefox 10. Skyway (talk) 03:19, 22 May 2012 (UTC)
Effect of space elevator on earth's orbit
What exactly would the effect be of the space elevator on the orbit of the earth itself (earth's orbit around the sun) ? Could it pull the earth of it's trajectory (similar to a rocket near an asteroid effecting the path of an asteroid, ie see article on impact event) 91.182.27.70 (talk) 08:17, 12 July 2012 (UTC)
- The effect on Earth would be negligibly small, since a space elevator's mass is tiny compared to Earth's mass. --Roentgenium111 (talk) 17:07, 13 September 2012 (UTC)
Effect of space elevator on counterweight's orbit
It would be good to have a section explaining why the orbit (or path) of the counterweight remains stable despite the extra forces acting on it when the climber moves up. This is a central question because otherwise the entire concept of a space elevator wouldn't be feasable. And indeed from a naive perspective one would expect that the horizontal speed the payload gets for "free" when moving up is not only taken from the earth's roational energy but also from the counterweight's kinetic energy which would in turn cause its orbit to decay every time a payload is moved up. — Preceding unsigned comment added by 92.20.87.48 (talk) 10:11, 28 August 2012 (UTC)
constraints on construction
I see that some people discussing "What are the Constraints on Building a Tower to Space?" seem to think that the sheer mass of the cable makes it impossible.
Could someone please add to this article the total mass of space elevator? Preferably both the initial "seed cable" mass and the much larger "finished cable" mass?
Would it be relevant to compare that mass to the total mass of all the stuff people have already installed in geostationary orbit, including the stuff that has since been moved to a graveyard orbit? Would it be relevant to compare that mass to the total mass of a recent year's production of natural gas? (Natural gas is the raw feedstock for most recent nanotube production, right?) --DavidCary (talk) 08:42, 6 January 2013 (UTC)
- As with many discussions on this talk page, this is all either original research or original synthesis. siafu (talk) 14:44, 6 January 2013 (UTC)
- I went ahead and added the masses of a few space elevator designs to this article, with references.
- Later I see that siafu seems to be warning me that "this" (?) is against policy. Oops. Am I misunderstanding the policy, or misunderstanding siafu, or (most likely) both? --DavidCary (talk) 18:52, 7 January 2013 (UTC)
I think finding out what confusions or misconceptions people have about space elevators then adjusting the article accordingly is a good thing. This article is the "go to" place where most people get all of what they know about Space Elevators. If there is a prevalent idea out there that SEs would be impossibly massive, we should make sure it's addressed in the article. We should probably cite something showing that reasonably anticipated designs require only a small number of large rocket launches (as DavidCary made a start on). Skyway (talk) 03:21, 8 January 2013 (UTC)
It seems to me it would be appropriate to discuss the need for two cables (or a wide web) to be built to efficiently allow an up climber and a down climber to pass each other. Two cables would lower the risk and allow maintenance on one while the other could be productive. The alternative would be to show how an up and down climber could pass at 300mph on one cable. 67.188.92.176 (talk) 21:19, 01 June 2014 (UTC)
Original research equations
The ribbon thickness and material strength equations are labelled as original research. I have seen them on a website. I wish to remove the label. Have the equations occurred in a formal paper or textbook? Andrew Swallow (talk) 04:42, 9 January 2013 (UTC)
- Personally, I wish the equations would go away (I see them as pedantic). But, I know there are other opinions out there. The other trouble with them (besides "pedantic") is they really aren't up to date. Before Edwards-Westling (Phase II) (~2002), the level of detail in people's thinking regarding taper was only at the level of "Gosh, how do we taper it to most efficiently hold itself up?" Those idealized equations did apply before 2002. Since then, with the work of Edwards (~2002) and more recently the publications of ISEC (~2012), the bar has been moved. Nowadays we consider thickening at space-junk altitudes, load concentrations as they vary with the distribution of climbers, distribution of non-structural mass, etc. That equal stress idea is an important principle yes, and it should be mentioned, but it's not so important these days to go into its excruciating details IMHO.
- I haven't done a complete search, but my expectation is that those equations (similar to as they appear now) would be found in pre-2002 sources (which are outdated), or "unreliable" post-2002 sources (because they regurgitate pre-2002 sources), or just somebody's intellectual exercise they published on WP as OR. What we're really trying to do is describe taper and constraints on the taper design (right?). I would trust descriptions of taper from Edwards Phase II, or the ISEC stuff. Both refs are already in the reflist. It would be a matter of reviewing them to find the good stuff in them. Skyway (talk) 09:25, 10 January 2013 (UTC)
- Will someone please publish the equations in a peer reviewed academic paper or text book so we can reference them. Andrew Swallow (talk) 23:35, 18 November 2014 (UTC)
- The basic equations are those published in the paper cited, The physics of the space elevator. They have already been referenced in the article, just before the point where they are introduced...
- The calculus and algebra for the development is quite straightforward, and do not qualify as "research" (BTW I corrected a forgotten minus sign). There certainly has been some intellectual work to present these sections, but it is mostly (scientific) redaction, definitely not research. It's the kind of dimensional analysis that Arthur C. Clarke has used decades ago, yielding the same results (see note 33, 4,960 km "escape length").
- To me, some redaction work is OK as long as it enables the reader to understand some point presented in the article, especially when that point is counter-intuitive, and the explanation is basic physics. A very crucial point, for instance, is that the taper varies exponentially with the free breaking length. I have seen in the discussions above someone saying that a linear growth would do the trick - that is dead wrong, and you can't understand why as long as you've not looked at the basic equation. Another crucial point is that the rotational speed has but a second-order influence in the feasibility of the elevator : I have seen discussions about the Moon elevator saying that since the Moon has no rotation to speak of, no cable could be anchored, since it is the centrifugal force that holds it upward - Once again, dead wrong, but to understand that you need to see the taper expressed with that "x" formula, which shows that the main factors are the ground gravity and the planet radius - not that much the rotational speed.
- I don't really care these sections being flagged as "OR", which was apparently the point of this small edition war, though I find it excessive. But they are crucial to understand some developments of the article, and they needed some rephrasing and corrections (which was the purpose of my intervention).
- Biem (talk) 06:36, 19 November 2014 (UTC)
- Then you win the edit war by adding <ref name="aravind"/> at the end of the paragraphs and can celibate by removing the OR notice Andrew Swallow (talk) 09:29, 19 November 2014 (UTC)
- Not so fast. Finding a fair reference is only one factor in includability, and the section has many includability problems. For one thing by the way, that .pdf cited by Biem is not reliable if it doesn't account for point masses, thickening at high space junk altitudes, etc. There's also a big question of undue weight (WP:undue) given to arcane details like this. It's all very sweet to personally get down and dig into idealized equations, and then to want to show the world, but includability in a Wikipedia article asks for more than that. The section as-is is questionable on includability because it's OR, not very communicative, etc.. Biem's self-described "improvements" look more like common pedanticism (forgive me) and only make the section's existing WP:OR, WP:undue, and pedanticism problems worse. I support their rejection for the time being while the pile can be sorted out. Skyway (talk) 21:13, 19 November 2014 (UTC)
- I assume you can bear the responsibility for maintaining a sign error in that section - not to mention other problems. Well - your problem, not mine, I was just trying to improve that encyclopedia. But, then, when Huns are on the loose, scholars can but hide away. Biem (talk) 20:03, 21 November 2014 (UTC)
- Putting aside the nutty "I'm a would-be hero" melodrama, I imagine you do know that there's much more to it than that. If one hides a legitimate correction in a haystack of chaff and then acts bewildered that no one wants to sort through the whole stack to find the single fleck of any value, well I think that's being unrealistic. Skyway (talk) 19:59, 22 November 2014 (UTC)
- Not so fast. Finding a fair reference is only one factor in includability, and the section has many includability problems. For one thing by the way, that .pdf cited by Biem is not reliable if it doesn't account for point masses, thickening at high space junk altitudes, etc. There's also a big question of undue weight (WP:undue) given to arcane details like this. It's all very sweet to personally get down and dig into idealized equations, and then to want to show the world, but includability in a Wikipedia article asks for more than that. The section as-is is questionable on includability because it's OR, not very communicative, etc.. Biem's self-described "improvements" look more like common pedanticism (forgive me) and only make the section's existing WP:OR, WP:undue, and pedanticism problems worse. I support their rejection for the time being while the pile can be sorted out. Skyway (talk) 21:13, 19 November 2014 (UTC)
- Then you win the edit war by adding <ref name="aravind"/> at the end of the paragraphs and can celibate by removing the OR notice Andrew Swallow (talk) 09:29, 19 November 2014 (UTC)
- Will someone please publish the equations in a peer reviewed academic paper or text book so we can reference them. Andrew Swallow (talk) 23:35, 18 November 2014 (UTC)
Safety : Earth Weather
Although this article is fascinating I was intrigued that there was no mention of Earth weather conditions that would be experienced by the tether - say the effects of a lightning strike on the line (yes it may be an opportunity to charge massive capacitors and power the operation of the elevator ... but is there any chance it would survive? ... would the geostationary component need thrusters as a back-up? would multiple separate tethers help?) - or the impact of a tether going through a twister?
Is it worth mentioning as issues to be considered later? WKChris (talk) —Preceding undated comment added 09:02, 7 September 2013 (UTC)
- My read is that terrestrial weather would be effectively irrelevant - forces are orders of magnitude smaller than the ones needed to simply support itself, and passing through the Van Allen belts means higher electrical charges than you'd get from terrestrial storm clouds. As for thrusters, moving cargo up and down the elevator will cause changes in angular momentum, moving the geosync point forwards and back. This would presumably be adjusted by simply pulling in or letting out some of the counterweight to shift the center of gravity. Tarl.Neustaedter (talk) 19:13, 7 September 2013 (UTC)
Climbers section
The changes which have been whip-sawing back and forth in the Climbers section are getting tiresome. The 66% is simply wrong (it's unreferenced, and my back-of-the-envelope calculations come up with a different height, which isn't a magic number), but the other changes which keep being put in are even worse. If nobody comes up with references for that section, I'm going to delete the entire chunk of text. Tarl.Neustaedter (talk) 02:27, 15 December 2013 (UTC)
- I should add - it's absurd to talk about achieving low-earth orbit from a geocentric space elevator. Any object released from a beanstalk (to use the other common name) will be co-planar with the cable and eventually (probably in less than two orbits) impact the structure, destroying it. This is one reason we need references, so we don't have arguments like this - someone writing for a reliable source will have either addressed this issue or responses to it will have been made and we can quote those too. This is very much a case where we should avoid original research. Tarl.Neustaedter (talk) 02:33, 15 December 2013 (UTC)
- I already reverted the edits of IP68. We're back where we started, I think were safe now from those efforts by IP68 (I think they really were "good faith", just muddled, digressive, etc.). It's not necessary to delete entire chunks of text IMHO. I think a simple "citation needed" tag would be a less drastic solution for the time being. In the process of mass-reverting IP68's stuff, that recently-added tag got wiped out too. I let it stay removed because I was lazy and I honestly would have preferred it without the tag. But, if it has to be there that's better than wholesale removal :-).
- Check your calculation again on the release from 66%. If something is released from that height, it's perigee will be just above the atmosphere. As far as a ref goes, there's one here (http://www.endlessskyway.com/2010/05/space-elevator-to-low-orbit.html). I'd cite it, but I'm not allowed because I wrote it. If you think it's reliable or if others do, it might be okay to cite it I suppose. I'm definitely not looking for links to my essay there, it's been there for three years and I haven't mentioned here until now. I only mention it now because I'm hoping to ease your urge to delete for want of a citation :-). There's also a crude Javascript simulator there to play with real time orbital mechanics and releases from any level of an Earth or Lunar Space Elevator. Again, I only mention it because it might be useful or fun for you to play with, not to promote it.
- Also, as far as getting to LEO from a SE, that link discusses how to do it. Basically drop from a height slightly less than 66% so that the perigee dips slightly into the atmosphere for aerobraking. It might take a number of orbits with draggy perigees to gradually knock the apogee from "66%" down to about 350 km. Then at the 350 km apogee a very small delta-V is needed to bring the perigee up so it doesn't dip into the atmosphere anymore. No one is saying it can be done without any delta-V. It's just that the delta-V needed is extremely small compared to the 35,000 fps needed to get to LEO from the surface with a rocket. The delta-V needed to lift the perigee out of the atmosphere is somewhat smaller than a normal de-orbit retro burn from LEO (which is only about 300 fps). In fact, it's the very same thing in concept except it's backwards, the "negative" of a de-orbit burn.
- Skyway (talk) 22:07, 15 December 2013 (UTC)
- I found another ref for "66%": http://gassend.net/spaceelevator/falling-climbers/index.html
- The maximum altitude shown in the graph shows the altitude at which the dropped object does not intersect the Earth. From what I can see, this ref considers intersection with the surface, ignoring the atmosphere. That would put it at a lower end of "about 66%, but it still supports "about 66%" for a perigee just at the top of the atmosphere.
- Gassend's work on this site is considered to be very reliable.
- Skyway (talk) 01:13, 16 December 2013 (UTC)
- Regarding hitting the cable. Yes, this subject is undiscussed (as I recall) in the article and it's probably a good (notable) candidate for inclusion. To summarize it, in a two dimensional world, most free-flying satellites would hit the cable in very short order. In a three dimensional operational world, factors conspire to cause them to miss:
- 1) "Big sky theory" -- The cable is thin, satellites are small, space is big.
- 2) Active management -- Collision avoidance is a major factor in SE design and operation. Most designs are able to maneuver out of the way of approaching satellites. Satellites themselves are able to maneuver.
- 3) Inclination -- Most satellites would have a thrusting phase after release to put them at the desired inclination. This puts them in the 3D world where the frequency of close approach is drastically reduced.
- 4) The cable itself oscillates like an upside down plumb bob and like a guitar string, meaning that even w/o post release thrusting the satellite would have a small inclination. The cable would also oscillate to somewhere else the next time around. This gives a statistical "fuzz" to how close the encounter would be each time.
- Skyway (talk) 01:56, 16 December 2013 (UTC)
Please curb your enthusiasm deleting section about equilibrium at geostatioanry orbit. Everything there is correct, factual, and true. This is Physics 101. — Preceding unsigned comment added by 68.228.67.228 (talk) 21:23, 17 December 2013 (UTC)
- Two things. First, it's unreferenced. For inclusion into Wikipedia, being accurate isn't sufficient - you have to cite a Reliable Source saying so. This article has a real problem of Original Research, don't make it worse. Second, it's not relevant. That the geostationary point on a beanstalk is an equilibrium point is (as you point out) obvious, and thus unnecessary. It's simply not relevant, it's an unimportant description. Tarl.Neustaedter (talk) 21:41, 17 December 2013 (UTC)
- It's not as obvious as it seems; the scenario described in the text being inserted by the IP relies on a number of unrealistic assumptions, e.g. unrestricted or frictionless vertical motion, in order to be a valid conclusion. Given a small push in either vertical direction, the climber's natural inclination would be to follow a similar (to GEO) orbit per Hill's Equations, and only its constraint to the cable would prevent that. The harder the push, the more elliptic the natural resulting orbit. This is again why OR is so dangerous. siafu (talk) 19:59, 18 December 2013 (UTC)
- IP68,
- Some of it may be factual and true, but it was and still is so unclearly expressed that we (well, I) couldn't figure out at all what you meant. The words appeared as gibberish regardless of what actual correct Physics 101 ideas you may have in your mind. The adversarial relationship established early on signaled that hand-holding you to figure out what you were trying to say would be a lot of work and would very likely be unfruitful. Skyway (talk) 07:04, 18 December 2013 (UTC)
- When converting 2/3 to decimal allow for the error bounds. Mathematically 2/3 may equal 66.6667 but the figures may only be accurate to 3 significant figures, giving 66.7 . The references actually gave the height, which someone removed. Andrew Swallow (talk) 12:57, 18 December 2013 (UTC)
- Andrew, Tarl, I think we've got a bigger problem on our hands than refining the way we express that level. Now blocked, it looks like the former IP68 is now IP hopping and making the same changes. I don't recommend semi-protection quite yet unless it has a hard and fast expiration. (Too many other permanently semi-protected articles are now moribund without the efforts of IPs, all with the only very thinly supported justification of "persistent vandalism") This guy is offended and it looks like he's determined. Does anyone know a next step other than semi-protection? Skyway (talk) 17:02, 18 December 2013 (UTC)
- I don't think this is the same person - One IP is in California, the other in New York. Just deal with it the way it is, and please, everyone start paying attention to WP:RS and WP:OR. Tarl.Neustaedter (talk) 18:42, 18 December 2013 (UTC)
- Yeah, it could be more than one person. I checked the locations too. Still, it's not too hard to proxy around the country by a number of means, such as using friends' computers with remote desktop software. It's hard to say. Skyway (talk) 18:55, 18 December 2013 (UTC)
- I don't think this is the same person - One IP is in California, the other in New York. Just deal with it the way it is, and please, everyone start paying attention to WP:RS and WP:OR. Tarl.Neustaedter (talk) 18:42, 18 December 2013 (UTC)
- Andrew, Tarl, I think we've got a bigger problem on our hands than refining the way we express that level. Now blocked, it looks like the former IP68 is now IP hopping and making the same changes. I don't recommend semi-protection quite yet unless it has a hard and fast expiration. (Too many other permanently semi-protected articles are now moribund without the efforts of IPs, all with the only very thinly supported justification of "persistent vandalism") This guy is offended and it looks like he's determined. Does anyone know a next step other than semi-protection? Skyway (talk) 17:02, 18 December 2013 (UTC)
WHY MUST CLIMBERS CLIMB?
The Climbers section includes: "A space elevator cannot be an elevator in the typical sense (with moving cables) due to the need for the cable to be significantly wider at the center than at the tips. While various designs employing moving cables have been proposed, most cable designs call for the "elevator" to climb up a stationary cable.": Let's cite these "various designs employing moving cables...". A brief search, I cannot find them, but I can imagine one that would work well. 71.8.171.3 (talk) 06:16, 21 August 2016 (UTC)
Possible GEO stability problem
There may be a stability problem with objects on the space elevator. If the horizontal velocity is reduced they will fall to a lower orbit. To get back to LEO from GEO a free flying object needs a delta-V of 3.9 km/s to slow them down. Objects going above GEO need a gain of delta-v. However if an object is attached to the ribbon then an exchange of velocity can occur. Consequently objects can move with only a small motor providing they follow gravity. Such movement can be unintentional and may enter a feed back loop. The climbers need to be equipped with brakes.
Andrew Swallow (talk) 19:11, 10 February 2014 (UTC)
elevator on pole
I was reading the article and something popped into my mind. Probably other people already thought of it, but i would like to know if it's a good idea or not.
If you place the elevator on the pole, and let it rotate 1 revolution per day, in the same direction as the earth rotation, you already need a considerable lower elevator. You need an additional 6000 km since you are connected to the pole instead of the equator, but you save 27000 km because the new stationary orbit is 4 times lower due to the rotating and thus increased centrifugal force. (86.93.56.137 (talk) 10:55, 16 February 2014 (UTC))
- Where is the pole? If the pole is at the North or South Pole something like that may work but will require enormous amounts of energy to move the entire elevator. Outside of about the Arctic and Antarctic Circles the elevator will crash into the Earth. Andrew Swallow (talk) 13:02, 16 February 2014 (UTC)
Yes, it must be the north or South Pole. The amount of energy needed is not that much. Only overcoming friction. The rotational kinetic energy is always there, just like the international space station. It has the kinetic energy but is not lessening it. 77.168.45.146 (talk) 13:20, 16 February 2014 (UTC) Sorry I see my ip 77.168.45.146 (talk) 14:25, 16 February 2014 (UTC) is changed since I'm now on my smartphone.
- Do you have a citation? Your description defies rotational dynamics as I understand it. Where does that figure of 27000 km come from? Tarl.Neustaedter (talk) 04:13, 17 February 2014 (UTC)
- F=rw^2 if w is halved then r quadruples. therefor radius goes from 36 Mm to 9 Mm. Thats how i got to the 27 Mm. Anyways it is a lot easier to just build a 100km tower since then you're already in space (according to definition) 194.105.120.70 (talk) 15:22, 18 February 2014 (UTC)
- Do you have a citation? As best I can tell, this is a complete misunderstanding of orbital and rotational dynamics. Tarl.Neustaedter (talk) 20:48, 18 February 2014 (UTC)
- F=rw^2 if w is halved then r quadruples. therefor radius goes from 36 Mm to 9 Mm. Thats how i got to the 27 Mm. Anyways it is a lot easier to just build a 100km tower since then you're already in space (according to definition) 194.105.120.70 (talk) 15:22, 18 February 2014 (UTC)
- What orbit is it in? Midgley (talk) 19:06, 18 February 2014 (UTC)
There would be no way to transfer angular momentum back and forth between Earth and the climbers. That's the key thing that separates a space elevator from all those other cutesy little space tethers (rotorvators, skyhooks, whatever). Off-equator anchor points would conceptually work, but only in a small range about the equator (+/-10 degrees or so). The vibration dynamics are much more complicated too. The other issue with a polar anchor point is that the cable would run horizontal to the ground for many hundreds of miles, it might not even be lifted off the ground for many degrees away from the pole.
Off-equator anchor points have been discussed in the literature, but more as a novelty. I don't think it's important enough to include except for a small mention of the possibility of moderate off-equator anchor points. An anchor point at the pole should not be mentioned IMHO. It would be a distraction.
The moon could handle larger latitudes for the anchor point because the elevator is held up not by centrifugal (pseudo)force as for an Earth elevator, but with the center of mass being well on the other side of L1. This could potentially be a notable mention.
Skyway (talk) 07:23, 21 February 2014 (UTC)
- Please add nothing of the above speculations without a reliable source discussing it. There are so many things wrong in the above conversations I don't even know where to start. Tarl.Neustaedter (talk) 19:03, 21 February 2014 (UTC)
Placed over the pole, either north or south, the payload will gain absolutely NOTHING from the earth rotation, because the effective radius of rotation there is ZERO....so how can it be advantageous over equatorial placement where radis of rotation is 4000 miles just standing on the ground? — Preceding unsigned comment added by 68.228.67.228 (talk) 04:58, 26 February 2014 (UTC)
- The pole is a rival to the equator. All the rotation has to be provided by an engine. Countries may have access to one of the poles but not the equator. Andrew Swallow (talk) 05:58, 26 February 2014 (UTC)
I think this whole talk section should be removed. It started out with helping someone visualize why an idea is nonsence then devolved into confusion. 2601:5:9380:6E:D955:EC7F:4858:8AAD (talk) 05:46, 6 April 2015 (UTC)
- We don't delete comments from talk pages unless they are defamatory. For off-topic discussions, they may be hidden. See WP:TPO. We also do archive, which may happen eventually. Tarl.Neustaedter (talk) 17:04, 6 April 2015 (UTC)
New report
..available here LeadSongDog come howl! 16:58, 26 February 2014 (UTC)
- Cool reference, thanks. Formal title "Space Elevators: An Assessment of the Technological Feasibility and the Way Forward". I would suggest to other editors that when citing from this report, please use section numbers, since the page numbers are probably going to change as formatting errors in the document are fixed (e.g., equation 6.82 on page 172 is almost unreadable, so needs a fix - and that will probably change the length of that page moving text around). Tarl.Neustaedter (talk) 18:18, 26 February 2014 (UTC)
The problem with fast reverts
Hi guys, I'm seeing a lot of fast reverts in the last few days. I think we should go easy with them. A fast revert carries along with it a slap in the face to the person who is reverted. It shouldn't, but it does (we're all weak human beings like that, especially us males). Some of the edits this has been done to have been trivial ones that could have been better left alone or simply modified with some nice words in the the edit summary. The kick in the nuts that goes along with reverts has been exacerbated by uncivil nasties in the edit summaries. Let's knock it off. Skyway (talk) 16:37, 6 April 2014 (UTC)
Apparent gravitational field
A citation was needed on the formula. How about: [1] Robin.Randall 1:03 9 July 2015 (UTC) — Preceding unsigned comment added by 128.107.163.58 (talk)
Edit comment: Try this on for size. Made more clear that cable is frame of ref, "accelerate" no longer a tripping hazard. "Up/Down" is more general (not specific to Earth. The term "geosynchronous" is already specific to Earth, so trying to avoid saying Earth in the rest of the description is futile.
The more accurate way to describe this is that an object released from a space elevator below the synchronous orbit point will enter an elliptical orbit with the highest point being where it was released from the cable. An object released from a space elevator above the synchronous orbit point will enter an elliptical or hyperbolic orbit with the lowest point being where it was released from the cable.
Regrettably, the above sentence while general and accurate, is much less understandable. You're better off using earth-centered terminology (perigee, geosynchronous, ect.). Tarl.Neustaedter (talk) 05:40, 14 May 2014 (UTC)
- Oh, and may I suggest that nitpicking wording on obscure cases is not the most productive use of editor's time? Wordsmithing and re-wordsmithing the same paragraph over and over just leads to edit wars. Tarl.Neustaedter (talk) 05:42, 14 May 2014 (UTC)
Take a break, Tarl. How much time did you spend on that bit of "nitpicking"? (eye roll) Skyway (talk) 06:17, 14 May 2014 (UTC)
Attempt to fix error in description of spining asteroid reverted
Hi there, I fixed an error here which someone has reverted.
https://en.wikipedia.org/enwiki/w/index.php?title=Space_elevator&oldid=612291048&diff=prev
I agree that it may well be going off topic - but the original text without my qualification in the next paragraph gives the false impression that you can return the materials of an asteroid back to Earth using a spinning tether. Instead, if it was, say, a million ton asteroid, you might be able to return one or two hundred tons this way - not worth the effort involved in building a space elevator. It might be worth doing for returning a sample.
So - what's the solution? Perhaps leave out the idea of using a space elevator on a spinning asteroid for mining?
But a space elevator could be used on a large enough asteroid say Ceres. The thing is you can't use it to mine a significant fraction of the mass of the asteroid or you will despin it completely. But you can use it for a very small scale mining operation of a few tons, or for a large scale mining operation on a very large asteroid.
Anyway don't think I'll attempt to edit again, but maybe someone esle can sort this out, so adding this note here with the information I found out.
I got confused by the statement originally - and actually wrote in one of my own articles that you can use a spinning tether for asteroid mining, without qualification, but couldn't remember where I read it and searching for the reference eventually traced it back ehre - and to the linked article, and then on careful reading of the linked article realized you can only extract a tiny fraction of the mass of an asteroid in this way - so wanted to correct the article so others reading it would not get the same false impression I got . Robert Walker (talk) 00:17, 11 June 2014 (UTC)
Valid complaint. Check out the attempt to subdue "bulk" without adding too many words supporting what is a fairly minor mention. 100.0.101.252 (talk) 16:59, 11 June 2014 (UTC)
needs updating
Whoever wrote the Space Elevator article should update it so that it references William Forstchen's 2014 book, Pillar To The Sky. The book should be read and the imaginings of how this technology could be implemented should be summarized. — Preceding unsigned comment added by 24.2.86.57 (talk) 02:40, 20 June 2014 (UTC)
- There are many science fiction novels with references to space elevators, no need to add anything to this article about a more recent novel. Tarl.Neustaedter (talk) 04:17, 20 June 2014 (UTC)
- Agree. (with Tarlneustaedter) 100.0.101.252 (talk) 18:30, 20 June 2014 (UTC)
Yobot errors
The reason Yobot removes <small> tags from image descriptions: Error 66 - The description is already set to 94% in the stylesheet. This causes problems with people who have trouble reading small print. In other words, the fact that it may look nicer to you and I doesn't mean it's accessible to someone with vision problems. Tarl.Neustaedter (talk) 14:58, 9 July 2014 (UTC)
- Okey Dokey. Skyway (talk) 23:42, 10 July 2014 (UTC)
Space shaft
I believe ksj.mit.edu is a reliable source and demonstrates a brief mention is due. --Ronz (talk) 15:13, 1 August 2014 (UTC
- Ksj.mit.edu being a reliable source does not make SpaceShaft noteworthy for inclusion. The ksj.mit.edu article only tells the story as told by the primary source—the head or spokesperson of the SpaceShaft team. SpaceShaft itself is patent pending, and other than its public presentation, its claims has not been validated or scrutinised by any expert or professional body—WP:FRINGE. Thank you. —JOHNMOORofMOORLAND (talk) 22:55, 1 August 2014 (UTC)
- I'm not sure I understand. Are you saying it is not an independent source? --Ronz (talk) 23:09, 1 August 2014 (UTC)
- It looks like he's doing this to make a point after his own edit was backed out. I suggested WP:POINT, he riposted with WP:AGF. Tarl.Neustaedter (talk) 00:13, 2 August 2014 (UTC)
- Let's try to focus on content here please. --Ronz (talk) 02:04, 2 August 2014 (UTC)
- It looks like he's doing this to make a point after his own edit was backed out. I suggested WP:POINT, he riposted with WP:AGF. Tarl.Neustaedter (talk) 00:13, 2 August 2014 (UTC)
- I'm not sure I understand. Are you saying it is not an independent source? --Ronz (talk) 23:09, 1 August 2014 (UTC)
Bradley C. Edwards nominated for deletion
Bradley C. Edwards was first prodded without discussion on this page, the article is now on Wikipedia:Articles for deletion/Bradley C. Edwards, please express your opinion.Mion (talk) 22:43, 18 August 2014 (UTC)
- Glad to see that his article has been retained. Looks extremely notable to me. Rags (talk) 15:14, 21 February 2017 (UTC)
Obstruction to any correction by Skyway
user: Skyway, I assume you can bear the responsibility for maintaining a sign error in that section - not to mention other problems. Well - your problem, not mine, I was just trying to improve that encyclopedia. But, then, when Huns are on the loose, scholars can but hide away. Biem (talk) 20:05, 21 November 2014 (UTC)
- I dimly recall there was a sign error (or something small) some time ago that someone corrected that wasn't an error and so it was corrected back. Yours might be the same, or it might not be. Can you point it out here? Skyway (talk) 19:34, 22 November 2014 (UTC)
- The integration of
- is incorrect, it should yield
- (with a minus sign) and should actually be written from ground (r_0) to geostationary (r_1), not the other way around (though the result is of course the same) :
- I hope this kind of elementary calculus can be corrected without being accused of unpublished research work...
- Biem (talk) 15:07, 27 November 2014 (UTC)
- So make the change and see what happens. I'd suggest making a single change in a single edit with a straightforward AGF edit summary like "Corrected sign error in equation (integral of dr/r^2 is *negative* 1/r). See talk page.". You'll either get complaints, or refinements, or reversion, or you'll get completely ignored. Getting ignored means the peanut gallery looked it over and didn't have enough of a problem to complain or anything else -- and that's pretty high praise here in WP! It's a good idea to make just the one (presumed) correction. The more changes one makes in a single edit, or in multiple edits in a short period of time, or the greater the "snoot content" in edit summaries -- then the more opportunity for consternation in the peanut gallery, the less likely any of the edits will be accepted happily (regardless of merit). Skyway (talk) 09:16, 28 November 2014 (UTC)
- I've just re-read the above and I want to assure you that I was sincere, I wasn't trying to "challenge" you or dare you. I just wanted to give you the opportunity to make the correction you found, which if done by itself w/o other changes, would probably result in a more rewarding experience for you. I reviewed the math too and I think you are probably correct with regard to what should follow from that initial postulate of constant-stress. I just (personally) think the constant-stress idea is an outmoded one given modern (post Edwards) thinking. I also think that math details are generally off topic and distracting. I would try to improve/correct way the math is stated, but since I think the postulate is outmoded anyway, for me that would be like "putting lipstick on a pig" - so I've avoided it. But, if you want to make the math correction, you should I think. Skyway (talk) 18:48, 4 December 2014 (UTC)
- Math detail is important in that case, as stated above, and even if a strictly constant-stress is outmoded it still is relevant for a dimentional analysis (what is feasable or not). And scientific readers may be interested in that.
Now, since that integration is but plain calculus and beaten track, is there an objection to move the "section OR" flag down to the sentence "It turns out that between these two points, this quantity can be expressed simply" - in order to point more accurately to the point where it ceases to be beaten track and may indeed be somehow personal development (though neither false, nor reasearch level) ? Biem (talk) 13:50, 5 December 2014 (UTC)
- The problem is that the original differential equation is unsourced and presumably original research. If you can find somewhere that's published and reference it, then we can move the section OR flag. Tarl.Neustaedter (talk) 21:52, 5 December 2014 (UTC)
- Right. It's the premise of constant stress that's the main unsourced "OR" part. It would probably be easy to find a ref, but reliability is the key thing here. Any ref that says "constant stress" is unreliable (!) IMHO as outdated and/or naive. The problem is that, since Edwards, there are more requirements on cable design than just the need to hold itself up. That's my issue. "Constant stress" is dubious in the modern age, yet many seem to like to focus on it (and then "digress pedantic" about the integration :-) ). Some time ago, some qualifiers were added to skirt the issue ("For such an idealized design without climbers attached..."). "Constant stress" is a start, but a better description would mention it and it's resulting cross section curve fairly briefly (no intermediate math), then focus on the variations on that in modern more fully fleshed out designs. By the way, the Edwards Phase 2 report is a great ref for that, ISEC might also have some even more recent papers. Skyway (talk) 04:54, 6 December 2014 (UTC)
OK :
- The differential equation in itself definitely is not original research, since it is the equation that (for instance) yields the result given by Arthur C. Clarke in 1979.
- I understand that the hypothesis "constant stress" is not the reference one at present (which would need to be explicated in the article, that is not my problem).
- Would it be acceptable to mention somehow that "constant stress is a start" - which is the main point in this section, if "constant stress" cannot be achievable there is no way a space elevator can be realized. Of course, if sufficient material is available, other designs may be realized, but this is not the point discussed here.
Biem (talk) 19:57, 6 December 2014 (UTC)
- That equation is still original research, unless you can find a reference where someone has published and discussed it. Whether someone else has derived it or not isn't the issue - it's whether we can reference a reliable source describing it. You may think it's trivially derivable, but Wikipedia is a tertiary source - the articles here are supposed to be no more than summaries and pointers to articles published elsewhere. If you have something interesting to say, this isn't the place to say it - this is only the place to point out where something else has published something interesting. Tarl.Neustaedter (talk) 21:15, 6 December 2014 (UTC)
OK, I think your objection (though per se legitimate) is out of purpose in this case :
- The basic differential equations are those published in the paper cited, The physics of the space elevator. They have already been referenced in the article, and cannot be considered as OR.
- The integration of these equation is a trivial calculus exercise (and is verified by Arthur C. Clarke statement of the escape length needed, which is quoted in the article).
- The policy Wikipedia:No original research that you point out states that "The phrase "original research" (OR) is used on Wikipedia to refer to [...] any analysis or synthesis of published material that serves to reach or imply a conclusion not stated by the sources." This is not the case here, since the result of the integration of that differential equation is common knowledge, and may be found in various sources (including the previous one authored by Arthur C. Clarke).
- On the other hand, that integration is needed in order to wikipedia:Verify the assertions of "4,960 km escape length" (calculated by Arthur C. Clarke in 1979), quoted on note 31. Verifiability is not just an "accepted standard" on Wikipedia, it is a Wikipedia:Core content policies : we are bound to verify the assertions found in the articles.
Thus, as I see it,an integration of that differential equation cannot be considered as an original research, it is just in that case a redaction work needed to present to the layman reader facts already known (and used in the article), and understand why the initial equation (documented) relates to other facts presented in the article, and leads to a very strong constraint on the material used for the space elevator tether (which is important for the comprehension of the issue).
Biem (talk) 22:54, 6 December 2014 (UTC)
- If you find those equations published elsewhere, then cite them. Adding citations is what this article needs. In essence, every sentence and every equation should have a citation (don't just say "it's somewhere in that 1000-page PDF". Specify page/section number). Then you can move the OR tag.
- The key here is that Wikipedia articles should be maintainable by a librarian who does not have expertise in the subject matter. Being able to follow references and differentiate between reliable and unreliable sources should be sufficient. Saying "it's a trivial exercise" is not sufficient - if you can't find it published anywhere, either it's not as trivial as you say, or it's not interesting enough for anyone to write down. The key again, this isn't the place for you to write something interesting - it's the place for you to point out where someone else has published something interesting and provide enough of a summary that it can be found. Tarl.Neustaedter (talk) 23:18, 6 December 2014 (UTC)
- Tarl.Neustaedter, You seem to be badly mixing the problematics.
- The policy we were refering to is that of Wikipedia:No original research - My point is that this passage is definitely not original research (see above, no need to repeat myself). In that context : The "section OR" is intended to flag original research as defined, and is therefore inappropriate, when the statement cannot be qualified as OR. It must therefore be moved or suppressed.
- Your point seems to be that some assertion laks citation. This may be the case, but this is not my point (and, basically, I don't care). If an assertion laks citation, just add the "reference needed" flag to it, but it is not per se a OR problem. Please do not use a "cite" policy to discuss a "OR" prohibition - cases are different.
- Biem (talk) 23:15, 7 December 2014 (UTC)
- Tarl.Neustaedter, You seem to be badly mixing the problematics.
Unless you have a stronger argument related to the "original research" problematic, I shall therefore move the "section OR" flag down to the sentence "It turns out that between these two points, this quantity can be expressed simply", and let you flag the equations with whatever "reference needed" you may wish to add. Biem (talk) 23:15, 7 December 2014 (UTC)
- Maybe we're not talking about the same text. Where is the citation for:
- If you can find a reference which describes the entire group of equations, then you can reference that. Otherwise, you need to put a citation on each equation before you can move away the section original research flag. That flag cannot move away until we can track down these equations to a reference which someone not expert in this subject matter is able to verify. Tarl.Neustaedter (talk) 23:37, 7 December 2014 (UTC)
- Further, let me quote from WP:OR:
Wikipedia articles must not contain original research. The phrase "original research" (OR) is used on Wikipedia to refer to material—such as facts, allegations, and ideas—for which no reliable, published sources exist. This includes any analysis or synthesis of published material that serves to reach or imply a conclusion not stated by the sources. To demonstrate that you are not adding OR, you must be able to cite reliable, published sources that are directly related to the topic of the article, and directly support the material being presented. (This policy of no original research does not apply to talk pages.)
The prohibition against OR means that all material added to articles must be attributable to a reliable published source, even if not actually attributed. [...]
- Until that equation can be attributed to something, it is OR as above. The fact that you can conclude that someone else must have come up with this sometime in the past doesn't suffice - you have to show where it's been published. Tarl.Neustaedter (talk) 23:49, 7 December 2014 (UTC)
Your reasoning is going the wrong way : "Published => Not OR" is not equivalent to "not published => OR", you are taking it for an equivalence which is a common mistake. But anyway, as stated above : * The basic differential equations are those published in the paper cited, The physics of the space elevator. They have already been referenced in the article, and cannot be considered as OR. Biem (talk) 07:29, 8 December 2014 (UTC)
- The problem is that nobody knows it isn't OR until they see it in the reference. If it is hard to find in a reference, the OR tag may stay simply for the practical reason of verifiability. Adding citation needed tags could be done, as well, but the section tag usually stays until the issues are at least mostly resolved in that section. —PC-XT+ 08:12, 8 December 2014 (UTC)
- I strongly disagree with that formulation.
- A lot of people can read the equations, and verify them - engineers, physics majoring university fellows, and so on ; and any one of them can verify that the equation is a basic one, that it has obviously been used by quite a number of authors, including Arthur C. Clarke in his address on the space elevator. This, in itself, shows that it can't be WP:OR. Now, of course, the layman-level-internet-reader may not understand why the equation is basically correct and not a magic formula (As it would appear to my daughter, I'm afraid, which is not a scientist), but that is not the point: your claim that "nobody knows it isn't OR" is blatantly false. The problem is not for anybody to see by itself whether it's OR or not, the problem is to trust the Internet users that go through the equations and assert that it is basically correct.
- As far as wikipedia:verifiability is concerned, we have all we need. It's OK, there is no problem.
OK, if that equation is part of those published in the paper cited, The physics of the space elevator: is it acceptable to cite them as such, translate the "OR" flag and move forward to the next section?
Biem (talk) 18:57, 8 December 2014 (UTC)
- I did not mean nobody to be taken literally as no person. I was referring to readers who could not determine it for themselves. There are many who could determine it, but they are not cited, so nobody else knows it is not OR. Apologies for the confusion. I didn't mean to offend you or suggest that the formulas are actually OR. —PC-XT+ 02:47, 9 December 2014 (UTC)
- I have formally challenged three of those equations, with the addition of {{citation needed}} tags in the article. Let's simply see if someone wants to supply citations to support those assertions over the next few weeks. Cheers. N2e (talk) 20:18, 8 December 2014 (UTC)
Guys, the offending uncited and dubious (and pedantic IMHO) text has been been tagged so for more than two years. Any of us would be completely justified in immediately removing it altogether. I am tempted to do just that. Then, according to WP:burden, it could not be reinstated without the (now) required citations. But, I think removal would be harmful because that idealized cross section curve is indeed historically notable in the development of space elevator designs. I also think removal isn't really necessary because there are lots of refs out there for this. It's just a matter of investing time into going out and getting them.
To start with, it looks to me like that name="aravind" ref (PKASpace Elevators.pdf) could do the job of justifying removal of the larger OR tag. Having perused the ref, it looks pretty good for covering the "constant stress" postulate at least. Someone would have to look at it closer to see if it covers the "pedantic integration" and the resulting curve (though it probably does). I'll put that ref in to cover the integration and the resulting curve as well as "constant stress", then I'll remove the tag and see how it goes. I'd still like to see an additional discussion on the modern cross section shapes, but at least there is some wording saying that the given curve is "idealized", so that will have to do for now. Skyway (talk) 20:40, 8 December 2014 (UTC)
- Which equations in Aravind are you citing? There are only 15 equations in that paper, it shouldn't be difficult to specify which equation you say is being referenced. Tarl.Neustaedter (talk) 22:45, 8 December 2014 (UTC)
You're right. Citations are always better when they give specific pages, paragraphs, etc.. Citing the paper as a whole is more vague, but better than no citation I think. It's also a step, small or large, on the way to betterment. Other sources could be found and cited too. Anyone up for any of that? Until that better state is achieved, the current state (imperfect citing, no section tag) is probably better (less controversial too) than the previous state (no cites, section tag). Eh? Skyway (talk) 04:04, 9 December 2014 (UTC)
- The differential equation is n°6 and its integration is n°7. Biem (talk) 05:15, 9 December 2014 (UTC)
- Claiming that is the same equation presented in the Wikipedia article is a long stretch. The article should be fixed up to present the equation as cited, and then describe whatever "obvious" transformation produces the simplified version used in the Wikipedia article. Again, present it in such a way that it can be maintained - so when an argument arises (as a few weeks ago) about wrong variables or wrong order, it can be sanity checked by an editor not expert in the material. (Wikipedia articles need to be written by people expert in the material but left in a state that they can be maintained by those with less expertise after the original authors have moved on). Tarl.Neustaedter (talk) 06:15, 9 December 2014 (UTC)
- I would be strongly against that. A reader interested by the formula necessarily has a scientific background, and will be able to figure out the "translation" needed between the formulaes in the paper and those of the wikipedia article. And if such an argument rises about "wrong variables", it can only be raised by contributors that lack any scientific background, which disqualifies them to discuss the point in the first place. For a non-scientist to pretend maintaining such a section would be pure folly - like trying to edit Seifert fiber space without any proper mathematical background. Biem (talk) 15:29, 9 December 2014 (UTC)
- Claiming that is the same equation presented in the Wikipedia article is a long stretch. The article should be fixed up to present the equation as cited, and then describe whatever "obvious" transformation produces the simplified version used in the Wikipedia article. Again, present it in such a way that it can be maintained - so when an argument arises (as a few weeks ago) about wrong variables or wrong order, it can be sanity checked by an editor not expert in the material. (Wikipedia articles need to be written by people expert in the material but left in a state that they can be maintained by those with less expertise after the original authors have moved on). Tarl.Neustaedter (talk) 06:15, 9 December 2014 (UTC)
- The differential equation is n°6 and its integration is n°7. Biem (talk) 05:15, 9 December 2014 (UTC)
Over the last few hours I've given that paper a closer look too and indeed it doesn't give our equations exactly. A good source should. I agree with Tarl there. One problem is that each source states the same idea or equation almost always somewhat differently than the others. Ultimately, the more equationeering done here, the harder to find exact duplicates in the sources, and making it especially hard to use more than one source. That's (yet) another argument for removing the "pedantic integration" and only mentioning 1) the "constant stress" starting point (easy multiple sources), and 2) the complicated resulting S(r) equation taken from one of the sources. That way we don't have to source "g=GM/r2" or any of the other intermediary pedantic bullshit -- just delete the middle garbage! :-) Still, I'd like to keep that imperfect source there for the time being (to stave off the section tag) while we find better sources and do some other rewording.Skyway (talk) 07:25, 9 December 2014 (UTC)
- I think the section is just about fine now with that introduction. Biem (talk) 15:29, 9 December 2014 (UTC)
- I disagree that the section is just fine. And I disagree with the thrust of Skyway's comment that a good source should match our equations. To the contrary, this article should match the sources we have. If we aren't summarizing the sources we are using, we're trying to be a primary source instead of a tertiary source. Again, this isn't the place for us to demonstrate our acumen and come up with new equations. It's a place for us to summarize what's published elsewhere. Tarl.Neustaedter (talk) 19:10, 9 December 2014 (UTC)
its posible to atach it directly to a moon instead of a counterweight?
somehow by placing a rail around equator to atach it to in both ends — Preceding unsigned comment added by 181.128.21.174 (talk) 11:16, 17 February 2015 (UTC)
- Off the top of my head, I expect the tether would need to be able to extend when the moon is farther away from the planet, since orbits tend to be elliptical, rather than circular. Also, the planet or moon would most likely wobble too much for rails to work, even if their equators were in line. There would probably be other problems, as well. —PC-XT+ 21:14, 17 February 2015 (UTC)
This should be removed. Please link to research not wonder aloud. 2601:5:9380:6E:D955:EC7F:4858:8AAD (talk) 05:49, 6 April 2015 (UTC)
Stationkeeping
Nowhere is there any discussion of the tidal effects of the moon and the sun on the orbit of the elevator and the necessity of stationkeeping thrusters. See Geostationary orbit#Orbital stability for context. Nyth63 00:46, 13 March 2015 (UTC)
- In general, space elevators are expected to be anchored to some spot on the surface. With that anchor, the geostationary point becomes stable - minor anomalies in any direction produce differential thrust from off-axis drag by the elevator thread itself, which tends to bring it back to where it needs to be. Tarl.Neustaedter (talk) 02:02, 13 March 2015 (UTC)
- That sounds like a bunch of gibberish or wishful thinking. The orbit of the elevator and it's massive counterweight is inclined to the elliptic by 23 degrees. When the elevator is above the elliptic, the gravity of the moon will be pulling in downward. When it is below, the moon will be pulling it upwards. Eventually it will swing in the plane of the elliptic and from the earth's surface it will appear to swing up and down above the plane of the equator every 24 hours. This is what happens to geostationary satellites when they run out of station keeping fuel for their thrusters. Nyth63 01:23, 16 March 2015 (UTC)
- Work out the vector sums. When the anchor is north or south of the equatorial orbit, the tether will apply a vector in the opposite direction. Small amount by the time you do the trigonometry, but it's unrelenting, and any unrelenting thrust adds up after a while. The thrust increases the more it's off-axis. The same occurs when the anchor moves in front or behind the anchored longitude. You can certainly construct a scenario where the on-planet anchor is so out-massed by the orbital mass that the thrust would be overwhelmed, but you have to work at it. Short of that, an anchored geosynchronous orbital tether is as stable as an L4 or L5 Lagrangian point. Tarl.Neustaedter (talk) 04:47, 16 March 2015 (UTC)
- This is a perfect example of why orbital mechanics in not intuitive. In my thinking on the problem I neglected to consder the tether as relatively inelastic. I tjink I follow the logic. If we consider a satellite with a circular orbit with a period of 24 hours, but inclined to the equator by 23 deg, its distance from a fixed point would vary by a fair amount during its period. A hypothical zero-mass, inelastic tether would prevent that. It still seems to me that the elasticity of a real tether would allow some 'wobble" not unlike a bean shaped orbit around L4 or L5. Nyth63 19:55, 16 March 2015 (UTC)
- Space tethers have huge numbers of coupled vibrational modes, and space elevators are likely to be highly elastic. A real elevator would have to make sure that these periodic perturbations due to tides would not set up resonances. Fortunately a space elevator would probably have active control anyway, but it will very likely be an issue. — Preceding unsigned comment added by EngineeringIsFun (talk • contribs) 15:49, 14 September 2015 (UTC)
- This is a perfect example of why orbital mechanics in not intuitive. In my thinking on the problem I neglected to consder the tether as relatively inelastic. I tjink I follow the logic. If we consider a satellite with a circular orbit with a period of 24 hours, but inclined to the equator by 23 deg, its distance from a fixed point would vary by a fair amount during its period. A hypothical zero-mass, inelastic tether would prevent that. It still seems to me that the elasticity of a real tether would allow some 'wobble" not unlike a bean shaped orbit around L4 or L5. Nyth63 19:55, 16 March 2015 (UTC)
- Work out the vector sums. When the anchor is north or south of the equatorial orbit, the tether will apply a vector in the opposite direction. Small amount by the time you do the trigonometry, but it's unrelenting, and any unrelenting thrust adds up after a while. The thrust increases the more it's off-axis. The same occurs when the anchor moves in front or behind the anchored longitude. You can certainly construct a scenario where the on-planet anchor is so out-massed by the orbital mass that the thrust would be overwhelmed, but you have to work at it. Short of that, an anchored geosynchronous orbital tether is as stable as an L4 or L5 Lagrangian point. Tarl.Neustaedter (talk) 04:47, 16 March 2015 (UTC)
- That sounds like a bunch of gibberish or wishful thinking. The orbit of the elevator and it's massive counterweight is inclined to the elliptic by 23 degrees. When the elevator is above the elliptic, the gravity of the moon will be pulling in downward. When it is below, the moon will be pulling it upwards. Eventually it will swing in the plane of the elliptic and from the earth's surface it will appear to swing up and down above the plane of the equator every 24 hours. This is what happens to geostationary satellites when they run out of station keeping fuel for their thrusters. Nyth63 01:23, 16 March 2015 (UTC)
Archiving
Anyone mind if I set up this talk page for automatic archiving (MiszaBot)? I'd just create archive_9, but this page gets long enough that it's probably worth automatically archiving discussions which haven't been active for over 30 days. Tarl.Neustaedter (talk) 04:58, 16 March 2015 (UTC)
- Hi Tarl. It's been nice and quiet here lately, eh? Anyway, if you don't mind, I do mind. I think automatic archiving is too "dumb" to figure out what should stay and what should go. Time is a bad measure for that, especially a time as short as 30 days. Some time ago the automatic archiving was removed and that was good. Now, it's up to humans to make those calls and that's good. Humans can tend to put off cleanup sometimes and a talk page can get long-ish, but even then it's no great sin in my opinion. I don't think it's too outrageously long right now. In fact, I like much of the pertinent back-story being visible. I think it adds some depth to the story in an informal way for readers who want to know more and for contributors to be more able contribute a little more smartly. Skyway (talk) 05:15, 25 March 2015 (UTC)
- I've looked it over and if you're hot to archive something I'd be willing to archive 16-23 and 25-27. Stand by for more... Skyway (talk) 05:46, 25 March 2015 (UTC)
- If you really want to cut out more, I'd be okay with archiving 1,2,4,7,8,11, and 14. Maybe 13 and 15 too. Still, I'd prefer to leave as is. Maybe just archive the ones on my list that are high on your list too? Skyway (talk) 06:15, 25 March 2015 (UTC)
- Well I think there is a solution for both of you. While archiving in too short a period is annoying, and it may very well be the case that an occasional Talk item should be left here for whatever reason, an auto-archive with the appropriate parms set up (e.g., 90 days, and leave a minimum of, say, five threads on the Talk page). It is always the case that making an explicit choice to leave one or more threads here longer than that requires a human, and each of the good bots has a way to do that so that the selected sections are not archived.
- So I favor the use of something that will archive the old threads on some reasonable, but long-stay, timetable when that Talk section has gone stale. N2e (talk) 01:15, 4 April 2015 (UTC)
- Looking at the threads which Skyway has deliberately kept in the above talk page (he just went and archived the ones he felt could be moved), it looks like his "stale" timeframe is more like five years. My goal was to treat *everything* as stale if it hasn't had activity within a fairly short defined period of time - because the talk page is supposed to be about actions to take on the article, and those should be either dealt with or denied within short order. Tarl.Neustaedter (talk) 05:01, 4 April 2015 (UTC)
- I've looked it over again more carefully and I'm actually fine with archiving any of it. So Tarl, if you want to make a new archive of any of it, it's okay with me. I'm dead set against automated archiving though. Archiving just isn't that tough a job, and the volume of talk text created here per year is fairly miniscule. It's nothing a human or two can't handle once a year or so. Automating it just doesn't save that much work. Time-since-last-edit-made-to-a-thread is a parameter quite uncorrelated to the myriad of parameters going into a human judgement (the gold standard). In the end, we'd be having to unarchive stuff the moronic "bot" archived, and that would be a lot of extra work.
- One thing to consider when choosing what to archive, Tarl: Even though by strict standards just about everything on this page can be archived. Most other pages do tend to retain things for quite some time and don't archive unless it becomes very unruly. The effect of this is that (like I said above) new editors can get a back-story/sense-of-history, avoid going around and around on the same old issues, etc.. So that's probably a good thing and probably a fair reason to keep some stuff. Go forth. Skyway (talk) 05:27, 5 April 2015 (UTC)
Reference number 24 is a broken link
Suggestion to replace it with the correct link, http://www.thetimes.co.uk/tto/news/world/article1967078.ece — Preceding unsigned comment added by Katacarbix (talk • contribs) 16:36, 27 March 2015 (UTC)
- Done, thanks for the pointer. Tarl.Neustaedter (talk) 18:19, 27 March 2015 (UTC)
Diamond nanothreads
A security point. If diamond nanothreads are used in the space elevator do NOT call them diamonds. Otherwise every burglar and mugger within a 1000 miles will try to finance his drug habit by stealing some and fencing it at the local jeweller. Calling it crystalline carbon will fool most of them. Andrew Swallow (talk) 20:57, 3 April 2015 (UTC)
- Hasn't been a problem with drill bits. For anyone dumb enough to make that mistake, allow evolution to take its course. Tarl.Neustaedter (talk) 22:11, 3 April 2015 (UTC)
- Drill bits are not items left out in public and associated with millions of dollars. The elevator is. Andrew Swallow (talk) 00:54, 4 April 2015 (UTC)
Error in history section
Currently it says:
"Objects would attain horizontal velocity as they rode up the tower, and an object released at the tower's top would have enough horizontal velocity to remain there in geostationary orbit."
The problem is that the objects already had the horizontal velocity of geostationary orbit because that is what geostationary orbit means, that the horizontal velocity of the surface of earth is the same as the orbital velocity. — Preceding unsigned comment added by 71.35.116.116 (talk) 03:05, 18 August 2015 (UTC)
- Although an object on the surface of the Earth is co-rotating with the Earth, that means that the object at the base of the elevator retains the same angular velocity as it rises the elevator-- not the same horizontal velocity. The horizontal velocity increases with height-- linear velocity is equal to angular velocity times distance (measured from the center of the Earth). So, when you've reached synchronous orbit, you are moving 6.7 times faster than you were at the Earth's surface. This is something that Jerome Pearson pointed out in his landmark paper reinventing the concept-- as you rise, you are taking momentum out of the Earth's rotational angular momentum, which you can use to either enter orbit, or if you go past synchronous altitude, fling yourself elsewhere in the solar system. EngineeringIsFun (talk) 15:44, 14 September 2015 (UTC)
External links modified
Hello fellow Wikipedians,
I have just added archive links to 4 external links on Space elevator. Please take a moment to review my edit. If necessary, add {{cbignore}}
after the link to keep me from modifying it. Alternatively, you can add {{nobots|deny=InternetArchiveBot}}
to keep me off the page altogether. I made the following changes:
- Added archive https://web.archive.org/20120621201313/http://www.spaceelevator.com:80/2012/02/obayashi-and-the-space-elevator---a-story-of-hype.html to http://www.spaceelevator.com/2012/02/obayashi-and-the-space-elevator---a-story-of-hype.html#more
- Added archive https://web.archive.org/20120424230830/http://www.spaceelevator.com:80/docs/iac-2004/iac-04-iaa.3.8.3.04.engel.pdf to http://www.spaceelevator.com/docs/iac-2004/iac-04-iaa.3.8.3.04.engel.pdf
- Added archive https://web.archive.org/20090227115101/http://www.spaceward.org:80/elevator-faq to http://www.spaceward.org/elevator-faq
- Added archive https://web.archive.org/20121015115735/http://www.spaceelevator.com/2009/09/canadian-mini-space-elevator-paper-available.html to http://www.spaceelevator.com/2009/09/canadian-mini-space-elevator-paper-available.html
When you have finished reviewing my changes, please set the checked parameter below to true to let others know.
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers. —cyberbot IITalk to my owner:Online 16:58, 27 August 2015 (UTC)
Attempt to delete International Space Elevator Consortium article.
The followers of this page may want to be aware of efforts to delete the International Space Elevator Consortium article for notability. Comment here: Wikipedia:Articles_for_deletion/International_Space_Elevator_Consortium#International_Space_Elevator_Consortium
I think the efforts to delete are ridiculous and the assertions of non-notability are from a position of major ignorance. In the modern era (post Edwards, post X-Prize), ISEC is the keeper of the very definition of what a space elevator is. They're actively engaged in improving all aspects of design. They coordinate efforts of people all around the globe. If an article on a notable subject doesn't convey that notability well, the fix is to improve the article so the notability is conveyed better, not to delete. But even then the ISEC article has plenty of sources anyway, especially for a stub.
Skyway (talk) 06:37, 1 September 2015 (UTC)
Merger
Per the outcome of Wikipedia:Articles for deletion/International Space Elevator Consortium, I have merged in the content from that other article into this one, with a slight rearrangement of the material. That can probably be pared down, for the organization being a small subtopic of this one, but I will leave it to folks regularly working on this article to do so. --Nat Gertler (talk) 21:39, 13 September 2015 (UTC)
Gizmodo article
I removed it from the lede, but I don't see why it shouldn't be used elsewhere, unless far better references cover the same topic. --Ronz (talk) 20:54, 7 January 2016 (UTC)
- The lede should summarize and introduce the topic. I don't believe this source as it was used did either. Granted, I may be overlooking something. --Ronz (talk) 17:43, 8 January 2016 (UTC)
- OK, so I'll write a section on how it is impractical with sources, and add a summary to the lead. 69.86.6.150 (talk) 17:48, 8 January 2016 (UTC)
- Exactly what we need. Note that the sources used in the Physics, Structure, and Constructions sections (and their sub-articles), might be helpful. Looking over it all, I'm a bit concerned that the Gizmodo article might be derived from this Wikipedia article, but I've not compared the sourcing. --Ronz (talk) 19:20, 8 January 2016 (UTC)
- The viability section is good, but could use some more detailed expansion on the problems. I reverted the addition to the lede; that doesn't belong in the first paragraph, the 3rd paragraph already describes the difficulties. Tarl.Neustaedter (talk) 02:51, 13 January 2016 (UTC)
- I agree. I'm a bit concerned as to how reliable the gizmodo article is for analyzing the limitations of current technology, let alone making assumptions about future technology. More and better sources are what's needed. It's a good start though. --Ronz (talk) 16:43, 13 January 2016 (UTC)
- I moved the viability summary to the third paragraph. You are correct, that is where it belongs. I worry about the WP:CRYSTALBALL tone of the whole article. The space elevator is something that is impossible to build today, and we should not predict that it will somehow be possible in the future. Also the second source for this is BBC and I'm sure there are others apart from Gizmodo. 69.86.6.150 (talk) 17:24, 13 January 2016 (UTC)
- The viability section is good, but could use some more detailed expansion on the problems. I reverted the addition to the lede; that doesn't belong in the first paragraph, the 3rd paragraph already describes the difficulties. Tarl.Neustaedter (talk) 02:51, 13 January 2016 (UTC)
- Exactly what we need. Note that the sources used in the Physics, Structure, and Constructions sections (and their sub-articles), might be helpful. Looking over it all, I'm a bit concerned that the Gizmodo article might be derived from this Wikipedia article, but I've not compared the sourcing. --Ronz (talk) 19:20, 8 January 2016 (UTC)
- OK, so I'll write a section on how it is impractical with sources, and add a summary to the lead. 69.86.6.150 (talk) 17:48, 8 January 2016 (UTC)
The gizmodo article is unreliable and POV. Crystal ball predictions like that are thoroughly unencyclopedic and right out. The fact that a material with the required specific strength is currently unavailable was quite adequately covered before the recent "viability" efforts began. There's no need to dive further into the subject, especially in such a POV manner.
The article is about a conceptual structure. It's not about predicting how, when, or if it could be built. The straightforward fact of specific strength is a known factor readily computed by engineers and published in reliable sources. It's on topic and is (was) stated straightforwardly without POV conclusions such as "impractical", "many" (issues), etc. Speculations about politics are completely off topic, as are predictions about logistics. Nattering on and on about "viability" like chicken-little is POV and wp:undue. Except for the straightforward specific-strength fact, it's all off topic. Skyway (talk) 20:16, 17 January 2016 (UTC)
Incidentally, the author of that article tried to promote it here on the talk page on 24July2013 (with his pseudonymic user name Jack Sebastian). See it in an old version of this talk page here. Skyway (talk) 21:52, 17 January 2016 (UTC)
- Pardon me, but I think you misunderstood my words. I did not claim to be the author os that particular article. When I wrote, "I just finished a web article on this very subject", I meant that I had finished reading an article on the subject. I am not in fact the author. I would have disputed the assumption before now, but my comment was a one-off and I hadn't watch-listed the article. The contributor who assumed it was me engaging in self-promotion didn't bother letting me know of the assumption. I appreciate you doing so, Skyway, so we can put this matter to bed. As a quick check of the article's history will indicate, I haven't made any other edits to this article (or, to my best recollection, this entire subject) in over 2½ years. - Jack Sebastian (talk) 22:43, 17 January 2016 (UTC)
Whoops. I take it back then. I thoroughly misconstrued! Sorry about that, man. Nice to hear from you. Skyway (talk) 23:31, 17 January 2016 (UTC)
- The viability section was well referenced and is important to the article. There was no reason to remove it. The whole article is biased towards this being a possibility, i.e. crystal ball. Adding a viability section is the opposite of crystal balling. 69.86.6.150 (talk) 00:11, 18 January 2016 (UTC)
I hear you, and I sympathize to a degree. But, inclusion has a longer list of requirements than just "well referenced" or the vague "important". It actually wasn't well referenced and also wasn't important to the article. It was an undue weight, an off topic distraction, and POV. The gizmodo ref was an unreliable POV rant, and the Elon Musk quote was argument from authority by someone who isn't even an authority on the matter (i.e. also unreliable). Skyway (talk) 07:48, 18 January 2016 (UTC)
Also, the article isn't "biased towards this being a possibility" at all. If the first paragraph had said "...climbers will repeatedly climb..." then you would have a point. But, it says "...climbers would repeatedly climb...". The whole article is written in that proper tense. It clearly conveys the fact that it's a proposal and a concept. It makes no assertions, innuendo, or predictions (as it shouldn't) about time, place, likelihood, or viability of future construction. If there are any will/would errors in tense, they aren't meant to convey a bias, they're just mistakes. If you find any, just fix 'em. Skyway (talk) 08:18, 18 January 2016 (UTC)
- You are misusing "POV". All reliable references are points of view. Neutral point of view (NPOV), which means representing fairly, proportionately, and, as far as possible, without editorial bias, all of the significant views that have been published by reliable sources on a topic. You have removed two significant references (Gizmodo, BBC) and you are giving the article an editorial bias. Also of course we can quote experts. That doesn't even make sense. Elon Musk isn't an authority on space travel?? The citation was from the BBC. The BBC considers him an authority. It isn't up to you to decide who is an authority. 69.86.6.150 (talk) 14:28, 18 January 2016 (UTC)
- Meh. Same old same old. Skyway (talk) 22:20, 18 January 2016 (UTC)
I removed the unjustified NPOV tag. IP 69, you have some misunderstandings about neutrality and about encyclopedic writing. Throwing a tantrum (the tag) because you can't seem to get your way is disruptive. Please try to work it out here. If you can't, please move on to something else. Skyway (talk) 22:47, 18 January 2016 (UTC)
- "Same old" is your argument? You have removed referenced material because it didn't agree with your editorial bias. No agreement has been reached. Two other editors here said the "Viability" section was good. You are the only editor that disagrees and you are not even coherently presenting your side of the argument. 69.86.6.150 (talk) 23:47, 18 January 2016 (UTC)
- I will add the comment that saying "is" implies fact. That should say "could be" or "would be", conditional future, not present tense. WP:CRYSTALBALL applies here; we don't know whether a space elevator (on earth, moon, mars or ceres) would be a ribbon, cord, ladder or jolly green beanstalk. Because the entire concept will not (my ethereal ball prediction) move out of the powerpoint presentation stage in our lifetimes. The NPOV tag is well deserved. Tarl.Neustaedter (talk) 00:56, 19 January 2016 (UTC)
- "Same old" is your argument? You have removed referenced material because it didn't agree with your editorial bias. No agreement has been reached. Two other editors here said the "Viability" section was good. You are the only editor that disagrees and you are not even coherently presenting your side of the argument. 69.86.6.150 (talk) 23:47, 18 January 2016 (UTC)
Hi Tarl. The article is saying "X is a proposed concept" "And in concept X, Y is a thing, and Z is a thing". The article is pretty clear that when the article says "Y is a thing", it means "In the context of X, Y is a thing". That's a standard (and encyclopedic) way of communicating that's used in almost all similar situations, and there's no good reason to screw around with it.
However, if that context isn't clear, please help fix it. What I mean by that is, when something like "A climber climbs the cable" is said, it should be clear that it means "In the proposed concept of a Space Elevator, a climber climbs the cable" without having to explicitly state the context every time.
Skyway (talk) 03:36, 19 January 2016 (UTC)
Hey! Tarl and IP69, I'm currently scanning through the article for places where a "pro" tone might be evident. I see a few places where it's a "maaaaaaaybe", but so far what I've found are real stretches IMO to be seen as POV. It would be helpful if either of you can point out the specific passages you have a problem with. Then we can mull over something specific instead of fighting in the over-broad terms we have been so far. How about that? Skyway (talk) 04:13, 19 January 2016 (UTC)
Guys, I just made a bunch of changes of "will" to "would" and similar variants. I think that might be part of what you were complaining about. I never read into the "will"s as anything POV, but rather as "in the context of the concept of a space elevator, X will be a thing". There was no intent to make a pro-POV by the various editors who wrote those various passages, they were just writing in the mindset of the design and thing being. But luckily, they were able to be converted to "would"s in a way that didn't produce awkward unintended side effects. I hope it works for you. :-) Skyway (talk) 05:18, 19 January 2016 (UTC)
- A quick glance shows that much improved. I don't have time today to give it a full review (I'm going in for a dilated-eye exam shortly, so no more reading today :-), but I'll come back tomorrow. Tarl.Neustaedter (talk) 11:51, 19 January 2016 (UTC)
- I further revised the lede and removed the NPOV tag. I still think we need a specific viability section, which discusses the challenges: materials, dealing with space junk (in particular, competing with any existing launch systems), dealing with angular momentum changes and long term stability, disaster liability, ...
- Thanks man. Skyway (talk) 00:19, 24 January 2016 (UTC)
- I further revised the lede and removed the NPOV tag. I still think we need a specific viability section, which discusses the challenges: materials, dealing with space junk (in particular, competing with any existing launch systems), dealing with angular momentum changes and long term stability, disaster liability, ...
Proper source for David Langs Paper
Don't know how to edit the references. Reference LangGTOSS [44] is a deadlink. Correct URL e.g.: http://spaceelevatorwiki.com/wiki/images/2/2b/Paper_Lang_Climber_Transit.pdf
(Above comment by IP 2a02:168:78f4:0:e81c:40e8:cb5e:6e9b )
- Fixed. Neither location would qualify as a reliable source, it used to be on someone's private web site, now it's on a wiki. We're supposed to only report on things which are published in reliable sources. I suspect that paper has never been published, which leaves it as a primary sources rather than secondary source we should be using.
Hi Tarl,
It's my understanding that being self published on one's own website disqualifies a source from being used to establish notability. It doesn't by itself negate reliability. A source is generally considered reliable if knowledgeable-enough editors make an educated judgement that it's reliable (or not). Make sense? That seems to be the way I've seen it work. I mean consider if that wasn't the rule. Pretty much anything popular would be includable. It would equate (muddle) reliability and notability.
David Lang's stuff passes the educated judgement test for reliability with flying colors I'd say, it just shouldn't be used to establish notability.
Skyway (talk) 06:25, 14 February 2016 (UTC)
- You're mistaken. Reliable Source means that the publisher is reliable, not the author. See WP:OR and WP:Verifiability#Self-published_sources. The only out is the line: Self-published expert sources may be considered reliable when produced by an established expert on the subject matter, whose work in the relevant field has previously been published by reliable third-party publications, which does not seem to apply here. Tarl.Neustaedter (talk) 10:29, 14 February 2016 (UTC)
- A possible solution; if someone is in contact with David Lang, having him submit his paper to arXiv, that could address the problem - it would then become a published paper. I was just reading another paper on arXiv about Luyten 726-8AB when this occurred to me. The submission process involves some bureaucracy, and will involve sanity checking by a representative of arXiv. But I suspect that paper would fit in well in the Space Physics section. Tarl.Neustaedter (talk) 20:35, 14 February 2016 (UTC)
I reviewed the WP:Verifiability#Self-published_sources link and the others and it's clear there's a lot more wiggle room than you suggest. For one thing, the key phrase is "largely not acceptable". This is only because self-published sources are largely unreliable crap, but not always, not at all. It then goes on to list one way a SP source might be used, but doesn't suggest it's the only way. That's just not an exclusive list.
And, a large body of defacto common law has allowed such inclusions all over WP. A large chunk of WP would go missing if it were otherwise. That's because reliability is estimated by knowledgeable editors, not by unknowledgeable editors who are only equipped to estimate "fame". Estimating reliability by citing fame is argument from authority, an infamous logical fallacy. Reliability isn't notability.
That said, thanks for fixing the link anyway!
Skyway (talk) 03:36, 21 February 2016 (UTC)
Alternate Design for Discussion
If two tethers (separate from the elevator cable) were attached at the center of the elevator cable with one attached to an ascending payload near the earth surface (above the atmosphere) and with the other attached to a descending payload near GEO, then couldn't a balanced tug on these two lines with the assistance of the angular momentum of the two payloads cause them to change positions without needing to "climb" the elevator cable? With reasonably equal payload masses, the transfer of angular momentum through the tension in the tethers would accomplish all the work.
— Preceding unsigned comment added by 198.203.213.6 (talk) 16:39, 12 October 2016 (UTC)
- Thanks, but per WP:TALK, talk pages are not for general discussion of the topic. If you can find reliable sources where this specific possibility is discussed then a summary of what they say could be included in the article. Other than that, we're supposed to discuss how to improve the article. Speculation of possible future developments doesn't belong here. There are probably space enthusiasts' web sites whose forums would welcome this discussion. Jeh (talk) 17:55, 12 October 2016 (UTC)
Space Junk
I've never heard anyone address the danger of all the satellite and space debris to the tether. Is there really that much debris? And is it possible to have some sort of force field that would deflect it around the tether? — Preceding unsigned comment added by 2601:646:200:FC4B:3036:B2DE:E745:8FC6 (talk) 20:16, 5 January 2017 (UTC)
- The Space Elevator is basically a rope rather than a solid object. By flicking it the tether can move out of the way of the debris. This has to be timed carefully. Andrew Swallow (talk) 14:16, 6 January 2017 (UTC)e
- yes, space junk is going to be a real concern, but not necessarily a showstopper. As Andrew above says, the tether has some ability to flex out of the way of pieces large enough to track. as for the smaller junk, the tether is currently projected to be a ribbon, and has to have enough margin that small impacts won't sever enough area to reduce the strength to below the requirement. EngineeringIsFun (talk) 21:05, 27 May 2017 (UTC)
External links modified (January 2018)
Hello fellow Wikipedians,
I have just modified 2 external links on Space elevator. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:
- Added archive https://web.archive.org/web/20080919070924/https://science.nasa.gov/headlines/y2000/ast07sep_1.htm to https://science.nasa.gov/headlines/y2000/ast07sep_1.htm
- Added archive https://web.archive.org/web/20080919070924/https://science.nasa.gov/headlines/y2000/ast07sep_1.htm to https://science.nasa.gov/headlines/y2000/ast07sep_1.htm
When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers.—InternetArchiveBot (Report bug) 00:21, 22 January 2018 (UTC)
Off topic chat
Extended content
|
---|
Mobile Platforms "Mobile base stations would have the advantage over the earlier stationary concepts (with land-based anchors) by being able to maneuver to avoid high winds, storms, and space debris" Cool... so you would essentially have a really nifty way of launching an ocean platform out of the stratosphere. What makes this quote particularly interesting is that in the previous section it clearly states that the "Earth's rotation creates upward centrifugal force on the counterweight." Now, I can imagine that an obvious benefit of having an ocean-based platform is that it would allow for a bit more flexibility; that you could (in principle, and ever so slightly) move the tether out of the path of space debris or satellites. However, being able to move it out of the way of high winds or storms is kind of a tall order. It assumes that the platform is freely floating and not secured to the Earth at all... something which would have disastrous consequences for any poor souls trapped on said platform. Unless, of course, I'm missing something here. 97.88.9.107 (talk) 11:55, 8 May 2018 (UTC)
|
Why does "space fountain" redirect here?
This article makes almost no mention of the space fountain concept (it gets a brief mention at the bottom). A space fountain is a very different sort of thing, related only in that it's a non-rocket space launch system. A key difference is that a space elevator is relatively static, it doesn't move and is held up by a counterweight post geostationary orbit, while a space fountain is dynamic, it's held up by the movement of the cable and can be made much shorter. --StarkRG (talk) 03:40, 3 September 2018 (UTC)
- Good catch, "space fountain" shouldn't redirect here. The space elevator concept isn't related to that calamity. It's only related in that they're both "non-rocket space launch" concepts, which is not enough to justify such a redirect. 67.248.17.85 (talk) 02:13, 11 October 2018 (UTC)
Graphs of optimal profiles
Someone anonymously deleted two graphs which I added that show the optimal cross-section profile for two different values of specific strength. These graphs are not original research. They are based on the equations that were already in the article, and which are referenced. The anonymous editor wrote as an edit comment,
"Undid the addition of a large amount of WP:OR about FBL. Much of it is dubious such as the required FBL being related to planet radius, and the misleading use (in the graphs) of material with specific strength corresponding to FBL of one earth radius, as if that was significant, which is isn't. Undue weight on FBL and incorrect info about it at that."
FBL apparently means "free breaking length". The text, before my edit, already explained that the free breaking length has to be on the order of the Earth's radius, so that's what I used for the first graph. For the second, I used a free breaking length ten times shorter, as was already in the text. The graphs show that what the text said is correct -- if the free breaking length is similar to the earth's radius then the idea is feasible, but if it's one-tenth then the idea becomes ridiculous. I am reverting his reversion, and if he wants to dispute what I say, let him do it here rather than starting an edit war. Eric Kvaalen (talk) 09:21, 28 January 2019 (UTC)
"...are not original research. They are based on the equations..."
. That's WP:OR. As for the free breaking length having to be on the order of earth's radius, that's meaningless. The only meaningful distance is the 36,000 km geosync radius.- I removed your changes, per WP:BRD, when controversial matter is added and reverted, it is not added back in until discussion achieves consensus. Reinstating it is simply edit warring. Tarl N. (discuss) 18:16, 28 January 2019 (UTC)
- I left a message on the IP's talk page, hopefully they'll see it and participate in this discussion. Tarl N. (discuss) 18:20, 28 January 2019 (UTC)
- A more specific complaint about your edit would be WP:SYNTH (which is a part of OR). Specifically,
Do not combine material from multiple sources to reach or imply a conclusion not explicitly stated by any of the sources.
Certainly any conclusion about the free breaking length in relation to earth's radius qualifies as synthesis, because I haven't seen that in any reference cited here. Tarl N. (discuss) 19:06, 28 January 2019 (UTC)
- A more specific complaint about your edit would be WP:SYNTH (which is a part of OR). Specifically,
- I left a message on the IP's talk page, hopefully they'll see it and participate in this discussion. Tarl N. (discuss) 18:20, 28 January 2019 (UTC)
- I agree, Tarl N.. One or two things Eric Kvaalen added, such as minor grammar edits for flow, were not dubious, but they were bundled in with a lot of other stuff that was. 40.117.60.104 (talk) 01:45, 30 January 2019 (UTC)
@Tarl N.: I don't see why you call making graphs from known equations "original research"!
Are you interested enough in this subject to discuss with me whether "the free breaking length having to be on the order of the earth's radius is meaningless", or are you only interested in debating whether making graphs is original research? If you are interested, we can discuss the question. (By the way, as I said, that stuff was already in the article. I did not add it.) If you think it's inappropriate to discuss this on a talk page, then we can discuss it on my user page, or even by e-mail, but I think it would be better to discuss it here where other interested persons can read it.
Eric Kvaalen (talk) 13:21, 31 January 2019 (UTC)
- Per WP:CALC:
Routine calculations do not count as original research, provided there is consensus among editors that the result of the calculation is obvious, correct, and a meaningful reflection of the sources. Basic arithmetic, such as adding numbers, converting units, or calculating a person's age are some examples of routine calculations.
. What you are doing is well beyond that description.
- To paraphrase a certain movie "show me the sources!" If you have a source that says anything about the radius of the earth (as such!) relating to the free breaking length, we can look at that. If you came to a conclusion that 6600 km (or something) for some reason is meaningful, unless that is because of the distance from center of the earth to the surface, then that distance is completely unrelated to the earth's radius and using that term is providing a misleading implication. Either way, you are engaging in WP:SYNTH unless you have a source that explicitly says something about the radius of the earth relating to the free breaking length.
- We've butted heads before; it's not clear a discussion is going to be worthwhile. My view is that you have a tendency to misunderstand what you read on Wikipedia and build on your misunderstanding. The only way to overcome that is to provide sources for your assertions. Tarl N. (discuss) 13:35, 31 January 2019 (UTC)
- EK, The "known equations" are just there to satisfy the pedants who like showing off how much they know about equations. It's not actually that critical to describe the largely-indiscernible detail that's already there, let alone the (clearly lovingly prepared I'll credit you) detail given in the graphs. This isn't a book about space elevators. It's enough to say "tapering helps a lot because X" IMHO. The equations themselves are just an idealized starting point for a design anyway.
Free breaking length is the wrong parameter to use in calculations or to dwell on for very long. It's really only good for illustrating the concept of high specific strength from a ropemaker's mentality. Each term can be converted to the other, but specific strength is what's used. FBL suffers from needing to be "translated" between a constant-g field for which the parameter applies and the g-proportional-to-(1/r^2)-compensated-for-centrifugal actual effective field. 40.117.60.104 (talk) 01:58, 1 February 2019 (UTC)
- EK, The "known equations" are just there to satisfy the pedants who like showing off how much they know about equations. It's not actually that critical to describe the largely-indiscernible detail that's already there, let alone the (clearly lovingly prepared I'll credit you) detail given in the graphs. This isn't a book about space elevators. It's enough to say "tapering helps a lot because X" IMHO. The equations themselves are just an idealized starting point for a design anyway.
@Tarl N.: I'm putting the graphs here to aid the discussion. Lots of people make graphs and put them on Wikipedia. These graphs are elementary computations. For instance, in the first graph, the value at altitude/Lc=5 is given by
Please check that this indeed equals about 2.17 as shown. I think we can trust Excel actually. Shall I send you the Excel file?
You seem to believe that I am the one who put in that stuff about the earth's diameter. You're beatin' the wrong horse! But he happens to be right, as I'm sure I can convince you if you are willing to listen.
I don't have the same recollection of our previous exchange as you.
I also disagree with Mr Anonymous. These equations are very important, for they can be used to find the minimum mass of the space elevator in order to lift a given mass, using a cable of a given specific strength.
Eric Kvaalen (talk) 19:47, 1 February 2019 (UTC)
- The point is that our task on Wikipedia is not to read stuff placed here and further elaborate on it. Our task is to find material published in reliable sources, and describe it here, making clear where it came from. This article in particular is a nightmare of uncited gobbledygook, to the degree that very little of it is verifiable. The improvement this article needs is citations for all the assertions made. At least some of which are probably simply false.
- As for your calculations, please read WP:CALC again:
Routine calculations do not count as original research, provided there is consensus among editors that the result of the calculation is obvious
. Why you are coming up with characteristic length in terms of earth's radius is far from obvious, and well into WP:SYNTH. If you claim that assertion was already there, and you don't understand how it got there, that itself is a problem. It should not be further propagated without a citation. Tarl N. (discuss) 01:37, 2 February 2019 (UTC)
@Tarl N.: So you say that is not a routine calculation? I do not suppose that you can do that calculation in your head, so in that sense it's not "obvious", but still, do you not have a calculator? Eric Kvaalen (talk) 07:05, 2 February 2019 (UTC)
- It's time to knock it off, Kvaalen. You're clearly thrilled about the work you've done and you want everyone to see how wonderful it is. But, anyone can see the graphs on old versions of the article, that's not the problem. No need to plaster it here. Plastering it here adds nothing except to show off some clean artwork (but bad information) and to drag out a lost argument. You're playing WP:ICANTHEARYOU, which is disruptive. We've said over and over that the first chart misleads because it suggests an incorrect relationship to planet radius. Pay attention. Stop your stupid quibbling. Cut your losses and go home. 40.117.60.104 (talk) 07:30, 2 February 2019 (UTC)
- I reduced the size of the bad graphs so as to not imply undue legitimacy. They're still zoomable for close examination. 40.117.60.104 (talk) 08:29, 2 February 2019 (UTC)
The discussion at WP:DRN is closed as failed - I wasn't aware that stating I didn't think the dispute was amendable to mediation would close it, but in retrospect, it makes sense. The options remaining, as I understand it, are WP:3O and WP:RFC. And, of course, WP:DISENGAGE. Tarl N. (discuss) 23:12, 4 February 2019 (UTC)
Earth's radius
Sorry for my late arrival ... let's straighten out some facts first. Biem (talk) 07:58, 8 February 2019 (UTC)
On of the comments above has been "The only meaningful distance is the 36,000 km geosync radius" : I can't agree with that. The reason is the last equation in Space elevator#Cable section section, that states :
Though the notations are not the same ones, this last equation is documented by ref_40, "The physics of the space elevator", but incorrectly refers to "equation 7" where it really should be "equation 8", the next one. I do agree that ""Routine calculations do not count as original research, provided there is consensus among editors that the result of the calculation is obvious"", and the notational changes should be obvious enough.
The equation states that the differences in section can be expressed by a constant factor () multiplied by a correction factor in x (1+x/2+...), meaning that to the first order of approximation, the relevant factor is the constant. It mentions both r0 (Earth radius) and r1 (geosync radius) in its left side, but on the right side the geosync radius has disappeared. The constant factor only depends on the earth's radius, and other factors such as rho, sigma and g.
The only "traduction" has been to replace the geosync radius (which is a computed value) by its value, once again given by ref_40, which eliminates the expression of geosync radius and expresses the x correction factor directly with known constants - ground gravity, earth radius and and rotational speed. This is basic algebra, "routine calculation", a variable substitution that allows a change of focus : the x represents the fraction of ground gravity that is relieved by rotation on the equator, meaning that it is really a small factor most of the time.
So in fact, the equation means that "the only meaningful distance is the planet radius and its ground gravity" as far as diameter variations are considered.
That way of seeing things is essential when looking at other planets and moons ; it explains why, for instance, it is much easier to make a space elevator on the Moon than it is on Earth. This is why the formula is expressed with respect to x instead of geosync radius : comparaison is easier that way, which is usefull for comparaisons in section "Extraterrestrial elevators". And actually, Earth is the worst case of all telluric planets.
Biem (talk) 07:58, 8 February 2019 (UTC)
Free breaking length
Free breaking length is defined as the maximal length for which a cable can sustain its own weigh, under constant gravity. It is also mentioned in ref_40 equation_8, under the name "characteristic length", which has the same definition. Equation_8 shows that the taper ratio directly depends of the ratio between free breaking length and Earth radius.
The equation obviously shows that when the free breaking length equals the Earth radius, their ratio reduces to one, only the correction factor survives, therefore the taper ration ~ e = 2.71828... Which is straightforward.
So then, " If you have a source that says anything about the radius of the earth (as such!) relating to the free breaking length, we can look at that." - Well, that's the one, where Earth's radius is explicitly stated and related to the free breaking length. As you can see, there is no original research in that part. So please, do look at that, and judge the graphs according to their straightforward dependency to that documented equation.
Biem (talk) 07:58, 8 February 2019 (UTC)
- OK, well, if you want real OR you may consider this : "when the free breaking length is such as (ie, Earth radius times correction), then a cylindrical cable reaching the ground from geosynchronical orbit can sustain its own weigh" (that is to say, beyond that resistance, profile optimisation is not needed any more). Funny thing, when you come to think of it : the cable strength needed to go from geosync to ground with a cylindrical cable is actually a free breaking length of Earth's radius, to a small factor approximation. This is because the important technical factor is ground gravity, not directly rotation speed. But I haven't seen anything like that stated clearly anywhere. This needs doing some maths (OR, OK) that will be left as an exercice. Biem (talk) 10:38, 8 February 2019 (UTC)
Is a graphic representation OR ?
Basically, the graphic is a plot of excel computations of the formula, for various altitudes :
The interesting point being to show the effect of various material characteristics, synthesized as their free-breaking length. So, basically, to me :
- Plotting the graphic for a given ρ/σ value is straightforward and cannot be qualified as original research.
Which values should be taken? this is suggeted by the other equation :
which shows that the taper ratio varies eponentially with the r0/L0 ratio. If this ratio is lower than one, the taper ratio is not significantly dependant of the tensile resistance ; otherwise it varies exponentially and can attain hudge values.
- Choosing r0/L0 = 1 and 10 are logical choices to illustrate the point that just one order of magnitude actually makes a huge difference.
Biem (talk) 10:27, 8 February 2019 (UTC)
Request for comment
|
Should the graphs which I tried to add be allowed? See Talk:Space elevator#Graphs of optimal profiles. Eric Kvaalen (talk) 09:23, 6 February 2019 (UTC)
- Oppose No is the short answer. They are original research, not backed up by external review or taken from established and peer reviewed source material. I add maps, diagram and chart right left and centre. I'm doing diagrams for the Red Orchestra groups at the moment, about seven of them, but not a single of them is orginal research. All of them are established groups that have been written about extensively for over 70 years and are well documented. So when I create the charts they will be exactly as written. I would never consider creating something on my own and publishing it. It is not possible and not acceptable by consensus. scope_creepTalk 11:17, 6 February 2019 (UTC)
- Comment If there is dodgy charts on this article, they should be removed. scope_creepTalk 11:20, 6 February 2019 (UTC)
- scope_creep, how is it original research? The formula I graphed is in the references as well as in the article. In what way does a graph need to be "backed up by external review" or "taken from peer reviewed source material"? As I have said above, lots of people make graphs of functions and add them to Wikipedia articles. Eric Kvaalen (talk) 14:23, 6 February 2019 (UTC)
- Allow per comments above. The statements that the formulas are OR is erroneous (see discussion above, references is equation 8 given in the article Aravind, P. K. (2007). "The physics of the space elevator" (PDF). American Journal of Physics. 45 (2). American Association of Physics Teachers: 125. Bibcode:2007AmJPh..75..125A. doi:10.1119/1.2404957.), & the graphical work cannot be considered as OR. A choice of parameter "Free Breaking Length = Earth radius" is natural & is the one relevant to illustrate the point, so the graphics are OK. Biem (talk) 10:42, 8 February 2019 (UTC)
- Change : Furthermore both graphics are useful to make the reader understand how a small variation on tensile strength can have huge consequences on the cable feasibility. But the graphics should really be limited from ground to geosync, there is no need to pull them further since the length beyond geosync is arbitrary and the real problem is the minimal diameter variation to get up there (beyond that the mass can be said to be "the same order of magnitude", which is quite enough to clarify the point). Biem (talk) 11:52, 8 February 2019 (UTC)
- Thanks, Biem, for the support. I do think it's useful to extend the graph beyond the geostationary altitude, because by using the optimal profile for quite a distance above that the total mass will be less. If one were to put a counterweight just above the geostationary altitude it would have to have a very large mass, going to infinity as the distance above geostationary goes to zero (because the centrifugal force minus the gravitational force goes to zero in that case). If one continues with the optimal profile a thousand miles higher and then puts a counterweight, the total mass will be less. If one carries on 10,000 miles, it will be even less, and so on. The minimal mass is approached as the cable (or thread) goes ever higher and higher, following the optimal profile, before a counterweight is used. The total mass is a very important factor, because even for the case where the free breaking length equals the radius of the earth, the total mass will be at least about 30 times the mass which one desires to lift, and when the free breaking length is one tenth the radius of the earth, it's tens of thousands of times more. The integral under the whole optimal profile gives the minimal mass, so I think it's better to have graphs which go out to where the cross section becomes small and the rest of the integral towards infinity is negligible. Eric Kvaalen (talk) 13:20, 8 February 2019 (UTC)
- OK, if you want to reason on the total mass involved, that is a correct approach. Biem (talk) 15:33, 8 February 2019 (UTC)
- Thanks, Biem, for the support. I do think it's useful to extend the graph beyond the geostationary altitude, because by using the optimal profile for quite a distance above that the total mass will be less. If one were to put a counterweight just above the geostationary altitude it would have to have a very large mass, going to infinity as the distance above geostationary goes to zero (because the centrifugal force minus the gravitational force goes to zero in that case). If one continues with the optimal profile a thousand miles higher and then puts a counterweight, the total mass will be less. If one carries on 10,000 miles, it will be even less, and so on. The minimal mass is approached as the cable (or thread) goes ever higher and higher, following the optimal profile, before a counterweight is used. The total mass is a very important factor, because even for the case where the free breaking length equals the radius of the earth, the total mass will be at least about 30 times the mass which one desires to lift, and when the free breaking length is one tenth the radius of the earth, it's tens of thousands of times more. The integral under the whole optimal profile gives the minimal mass, so I think it's better to have graphs which go out to where the cross section becomes small and the rest of the integral towards infinity is negligible. Eric Kvaalen (talk) 13:20, 8 February 2019 (UTC)
- Oppose As per previous discussions. The free breaking length and radius of the earth are not meaningful comparisons. Without an WP:RS, that entire section should probably be excised. Tarl N. (discuss) 21:44, 8 February 2019 (UTC)
- Tarl, Biem has gone ahead and explained why the radius of the earth is relevant (as I proposed to do but you declined to hear it). See #Earth's radius. Meanwhile I have noticed that Arthur C. Clarke, (1979) "The space elevator: 'thought experiment', or key to the universe?" makes this point. Eric Kvaalen (talk) 09:05, 9 February 2019 (UTC)
- Clark talks about 4960 km for his "escape length" figure, not earth's radius. That's the key point - using the radius itself is absolutely meaningless in this context, and misleading in that it implies the size of the planet is somehow itself involved. But I've spent so much time arguing in past interactions with you about stuff you clearly don't understand, that at this point, unless you have a reliable source which says what you intend to put in the article, I'm not interested. Tarl N. (discuss) 09:17, 9 February 2019 (UTC)
- No it's not meaningless, as Biem has explained. Anyway, you can't complain about the parameters I use in my graphs. If they happen to show that the mass becomes enormous if the FBL is 1/10 the earth's radius, but not if it equals the earth's radius, well, that's not my fault. We editors are not obliged to hide things from the readers if they can't be found in the literature (though as I say, Arthur C. Clarke says basically the same thing). Eric Kvaalen (talk) 09:26, 9 February 2019 (UTC)
- There is no point in saying that "Clark has not mentioned the fact" (who cares) the point is that Earth's radius is explicit in the reference mentioned : in equation 8, R is the Earth's radius, and Lc is the free breaking length. Clearly you have not read the section #Earth's radius above, or have not understood it. Your saying that "The free breaking length and radius of the earth are not meaningful comparisons" is blatantly false, obviously you have not seen the meaning of the factor. Hint : the in that formula is Earth's radius. You could do exactly the same maths for the planet Mars or Venus, and come to the same conclusion : the resistance needed for a cable on Mars is that which gives it a free breaking length of Mars' radius, under Mars' ground gravity. Yes, it implies that the size of the planet is somehow itself involved, just face it, there is no rejecting it by talking nonsense "about stuff you clearly don't understand". Biem (talk) 09:43, 9 February 2019 (UTC)
- Your "equation 8" doesn't say anything about minimumFBL=planetRadius. Doesn't even solve for minFBL. Citing it for that is total bunk. 40.117.60.104 (talk) 01:25, 10 February 2019 (UTC)
- There is no point in saying that "Clark has not mentioned the fact" (who cares) the point is that Earth's radius is explicit in the reference mentioned : in equation 8, R is the Earth's radius, and Lc is the free breaking length. Clearly you have not read the section #Earth's radius above, or have not understood it. Your saying that "The free breaking length and radius of the earth are not meaningful comparisons" is blatantly false, obviously you have not seen the meaning of the factor. Hint : the in that formula is Earth's radius. You could do exactly the same maths for the planet Mars or Venus, and come to the same conclusion : the resistance needed for a cable on Mars is that which gives it a free breaking length of Mars' radius, under Mars' ground gravity. Yes, it implies that the size of the planet is somehow itself involved, just face it, there is no rejecting it by talking nonsense "about stuff you clearly don't understand". Biem (talk) 09:43, 9 February 2019 (UTC)
- No it's not meaningless, as Biem has explained. Anyway, you can't complain about the parameters I use in my graphs. If they happen to show that the mass becomes enormous if the FBL is 1/10 the earth's radius, but not if it equals the earth's radius, well, that's not my fault. We editors are not obliged to hide things from the readers if they can't be found in the literature (though as I say, Arthur C. Clarke says basically the same thing). Eric Kvaalen (talk) 09:26, 9 February 2019 (UTC)
- Clark talks about 4960 km for his "escape length" figure, not earth's radius. That's the key point - using the radius itself is absolutely meaningless in this context, and misleading in that it implies the size of the planet is somehow itself involved. But I've spent so much time arguing in past interactions with you about stuff you clearly don't understand, that at this point, unless you have a reliable source which says what you intend to put in the article, I'm not interested. Tarl N. (discuss) 09:17, 9 February 2019 (UTC)
- Tarl, Biem has gone ahead and explained why the radius of the earth is relevant (as I proposed to do but you declined to hear it). See #Earth's radius. Meanwhile I have noticed that Arthur C. Clarke, (1979) "The space elevator: 'thought experiment', or key to the universe?" makes this point. Eric Kvaalen (talk) 09:05, 9 February 2019 (UTC)
- First of all, he didn't say "minimum" FBL -- the question is whether the earth's radius is relevant. Second, it's not bunk at all. What he's saying is that the equation says that the ratio of earth radius to FBL enters into the equation in an exponential. So it's very important. If that ratio goes up to 10, say, then the mass of the contraption becomes ridiculously high. Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- Nice. You're very smart. To bad you're not published in a reliable ref. 40.117.60.104 (talk) 10:43, 10 February 2019 (UTC)
- First of all, he didn't say "minimum" FBL -- the question is whether the earth's radius is relevant. Second, it's not bunk at all. What he's saying is that the equation says that the ratio of earth radius to FBL enters into the equation in an exponential. So it's very important. If that ratio goes up to 10, say, then the mass of the contraption becomes ridiculously high. Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- Arguing on this is exactly why we have a prohibition on WP:OR. Find me a WP:RS that talks about space elevator materials in terms of free breaking length and Earth's radius. Yes, you can come up with an equation that uses earth's radius. That does not mean it's meaningful, and attempting to make it so is WP:SYNTH. Tarl N. (discuss) 10:00, 9 February 2019 (UTC)
- ??? Isen't the source quoted a reliable one ? 2A01:CB04:11E:6200:2059:6185:ED3:D9CA (talk) 10:29, 9 February 2019 (UTC)
It's not original research to make a graph, or two graphs. Eric Kvaalen (talk) 10:07, 9 February 2019 (UTC)
- It is if the graphs are a major misinterpretation, and are presented with newly invented normalization and scaling that confuses even experts. 40.117.60.104 (talk) 01:32, 10 February 2019 (UTC)
- In what way is it a "misinterpretation"? And the "normalization" as you call it is simply a device to make it so that the integral under the curve equals the minimum ratio of the mass of the elevator to the mass of the object to be lifted. That makes it very clear to a mininally-educated reader that the idea of a space elevator is bonkers if the free breaking length is only 637 km. And you can't come along and say "No, don't make a graph that clearly shows that! It's original research!" (Anyway, we're not the first to realize that. It's said by others that the free breaking length has to be quite long. Edwards doesn't give a free breaking length, but he does say that that tensile strength has to be 100 GPa, which gives a free breaking length of about the earth's radius.) Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- You misread WP:CALC, and you are misusing uncited material to boot. As to the source being reliable, read WP:RS. Clarke's commentary (an address to a congress) falls under WP:PRIMARY. And even so, he does not talk about the free breaking length in terms of the earth's radius. Tarl N. (discuss) 13:51, 9 February 2019 (UTC)
- Also, you added a comment about Edwards elevator requiring tensile strength of 100 GPa. Please give a source for that assertion. Tarl N. (discuss) 13:58, 9 February 2019 (UTC)
- I've already said that the calculations are routine. Nobody complains when people make graphs of formulas and put them on Wikipedia! The source for Edwards is right there in the text (I did not take it out). Tarl_N., do you really not understand that the earth's radius is the relevant distance, or are you just saying that we can't let users see that because we haven't found a published "secondary" source that says it explicitly? Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- Also, you added a comment about Edwards elevator requiring tensile strength of 100 GPa. Please give a source for that assertion. Tarl N. (discuss) 13:58, 9 February 2019 (UTC)
Tarl_N. : Stop avoiding the precise answers given to your questions. You asked "Find me a WP:RS that talks about space elevator materials in terms of free breaking length and Earth's radius." Now the reference mentioned in the article talks about space elevator materials in terms of free breaking length and Earth's radius (equation n°8). Please acknowledge. Biem (talk) 14:26, 9 February 2019 (UTC)
- Equation 8 does not talk about free breaking length. It talks about the taper ratio of a space elevator. It uses the earth's radius because it starts at the earth's radius and goes outwards (hence the exponential). It shows the taper increasing from the surface to the top of the elevator, does not show a releationship between free breaking length of a uniform cable and the radius of the earth. Tarl N. (discuss) 14:45, 9 February 2019 (UTC)
- Tarl_N. : you are getting beyond WP:Faith. Let's do it slowly. Equation 8 reads :
-
- What do you think Lc represents ?
- What do you think R represents ?
- Does the comment on next page, which goes "Note how an increase in the characteristic length Lc leads to a faster than linear decrease in the taper ratio.", qualify as a discussion of space elevator materials ? If not, explain why.
- Does that publication (not equation) qualifies as "a WP:RS that talks about space elevator materials in terms of free breaking length and Earth's radius" ? If not, explain why.
- Given that R<<Rg, what can you say of the term between square brackets ?
- Given that the term between square brackets is ~ 2, how would the taper ratio varies when R is less than Rc ? and when R is greater than Rc ?
- Well, in short : do you really understand what you are reading ? And could you prove it by reading my answers and answering to the point, without making your objections a randomly moving target ?
- Biem (talk) 16:41, 9 February 2019 (UTC)
- Biem, it's the idea that minFBL = planetRadius (one-for-one!) that's the bone of contention here, not whether planet radius appears in any equation for min FBL (or "Lc"). Both factors will of course appear in many equations. You just haven't established that your "equation 8" relates at all to the idea (wrong idea) that min required FBL equals a planet's radius one for one. Maybe the two of you are trying to prove two different things? I don't know. But, if you're trying to prove "minFBL = planetRadius", well it's hard to see how you can do that with your "equation 8", unless you plan on some major refactoring of it. Even if that was possible, it would be serious WP:OR, WP:SYNTH, and whatnot. 40.117.60.104 (talk) 02:06, 10 February 2019 (UTC)
- I have just answered that, higher up. Saying that we can't use the fact (even on a talk page) that an exponential of a fairly large number is very high is like forcing stupidity. Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- Nobody ever said FBL = planetRadius. The point is simply that given a planet radius and its ground gravity, the material resistance needed is at least of that order of magnitude. how would the taper ratio varies when R is less than Rc ? and when R is greater than Rc ? If the FBL is significantly lower you simply can't do it, if it is significantly higher a cylindrical cable will do and taper is irrelevant. So, indeed, minFBL ~ planetRadius as far as the order of magnitude is concerned. Thus, the choice of FBL ~ planetRadius and FBL ~ 10 x planetRadius are relevant choices to illustrate the point. I would have chosen e^(√10)~24 and e^10~22000 for a more dramatic comparaison of a 5dB change. Biem (talk) 07:45, 10 February 2019 (UTC)
- I have just answered that, higher up. Saying that we can't use the fact (even on a talk page) that an exponential of a fairly large number is very high is like forcing stupidity. Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- Biem, it's the idea that minFBL = planetRadius (one-for-one!) that's the bone of contention here, not whether planet radius appears in any equation for min FBL (or "Lc"). Both factors will of course appear in many equations. You just haven't established that your "equation 8" relates at all to the idea (wrong idea) that min required FBL equals a planet's radius one for one. Maybe the two of you are trying to prove two different things? I don't know. But, if you're trying to prove "minFBL = planetRadius", well it's hard to see how you can do that with your "equation 8", unless you plan on some major refactoring of it. Even if that was possible, it would be serious WP:OR, WP:SYNTH, and whatnot. 40.117.60.104 (talk) 02:06, 10 February 2019 (UTC)
- Biem, I think you mean Lc rather than Rc. And you meant FBL ~ planetRadius/10, not times 10. Eric Kvaalen (talk) 10:41, 11 February 2019 (UTC)
- That it includes surface gravity, and is only weakly omega dependent, and is only "of same order of magnitude" to surface radius is good progress. Still, that's a lot of WP:OR unless it's found explicitly somewhere in a reliable source -- with Lc and only only Lc on the left side and not at all on the right side. Even then, it would be probable undue weight on FBL, And, "order of magnitude" is so crazy vague so as there to be no notable correlation at all. Seeing a pattern where there is none is for mystics and conspiracy theorists. As far as relevant choices go , a much better choice would be samples of various extant materials compared with non-existing materials that *would* meet the specific-strength requirements. 40.117.60.104 (talk) 10:29, 10 February 2019 (UTC)
- (edit conflict)I don't have to prove anything to you. The equation uses the breaking length (they call it characteristic length), that doesn't mean a plot of a relationship between radius and characteristics length is meaningful. The characteristic length is a result of gravity and tensile strength, the fact that it can be restated in terms of radius and mass doesn't make it meaningful.
- Any statement not cited is WP:OR. If it's cited and the reference doesn't actually say what was added, it's WP:SYNTH. Tarl N. (discuss) 16:57, 9 February 2019 (UTC)
- You do have something to prove, since you pretend to raise "relevant" questions and ignore the answers. Your refusal means that your opinion cannot be taken into account, you behave as you're just trying to bully out Eric Kvaalen's intervention, which is against the wikipedia principles. So do answer, or please keep away from this debate.
- And "Any statement not cited is WP:OR" is just jibberish, since the redaction of an encyclopaedia does involve a redactional work - otherwise, "Any statement literally reproduced is WP:copyvio", which is far worse. Biem (talk) 17:15, 9 February 2019 (UTC)
- Tarl, I think it would be a good thing to make "a plot of [the] relationship between radius and characteristic length" (showing the minimum mass versus that ratio), but that's not what I did. Doing that would require integrating under the curves for all the values of the ratio that are used along the abscissa. That really would be in the category of not an obvious or trivial calculation! Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- Oppose Even if there are no OR problems, I question the value of the graph to the typical reader. --Ronz (talk) 16:51, 9 February 2019 (UTC)
- This is a (another) redactional problem, which may be relevant, but not to be discussed under this heading. Biem (talk) 17:15, 9 February 2019 (UTC)
- I'm not sure how to interpret that beyond taking it as evidence that you're not here to work cooperatively with others to build this encyclopedia. Please strikeout. --Ronz (talk) 04:18, 10 February 2019 (UTC)
- This is a (another) redactional problem, which may be relevant, but not to be discussed under this heading. Biem (talk) 17:15, 9 February 2019 (UTC)
- Thank you, Ronz. I don't know what a "redactional problem" is, but I do agree about the problem of WP:NOTHERE. Kvaalen is clearly "not here", based on constant WP:DONTGETIT and filling up walls of text quibbling about his crackpot graphs. Kvaalen has been beating that horse for two weeks now. I'm not sure yet about Beim. 40.117.60.104 (talk) 11:04, 10 February 2019 (UTC)
- That's not how to talk to people! Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- Oppose, I think. Adding a plot created from a published and referenced equation is not original research. But it seems like this plot used parameters (e.g. free breaking length) which are not obvious, specified in the references or a matter of consensus. Selecting those values to make the plot would be original research. Also the values use would have to be reasonable ones, otherwise the plot is not useful and could be misleading. If someone can find a reference for reasonable parameters to put into the equation, then the plot would be fine. It's the unreferenced insertion of those parameters which makes it original research. Fcrary (talk) 20:37, 9 February 2019 (UTC)
- But when you make a graph, you have to choose the parameter! The choices I made are obviously relevant because they show that when the parameter is 1, you get a nice graph and a minimal mass "only" about 30 times the mass to be lifted, whereas if you use the value 0.1 you get a graph that goes "sky high" and the minimal mass will be ridiculously high. This was obviously realized by others such as Edwards, even though he doesn't say it in so many words. But anyway, we are not obliged to hide obvious things from the readers. If the graphs show that, then so be it. Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- Oppose. Awful.
---The graphs themselves suck. Have any of you actually taken a look at them? It's the graphs that suck, not (necessarily) the equations they're supposedly based on. Take a look at the X scale. It's different for each plot. Kvaalen took it upon himself (in a fit of WP:OR) to "normalize" the altitude, which nobody ever does that way and you will never see in a reliable ref. See if you can figure out what's going on with it. I can't, and I'm a fair expert. Kvaalen clearly isn't an expert yet he's making stuff like this up! Any inclusion of graphs such as these would need to see them re-done in a way that's understandable. And importantly, they shouldn't be in terms of FBL because...
---Free breaking length is relatively unimportant. "Don't dwell on FBL". "30 MegaYuris or bust". FBL is nice in an introductory way to show that materials need to be strong and low-density. It's an important concept to know and it's surely relevant to space elevators, so it should be mentioned, especially that 5000km number from Clarke (not 6370km!). FBL is proportional to specific strength, but engineers do engineering using "Specific Strength", not FBL. In fact, the big mantra they use for fun is "30 MegaYuris or bust". They define a "Yuri" as 1 Pa/(kg/m^3). FBL isn't used for a number of practical reasons, probably the main ones being the fact that it assumes 1) a constant gravity strength for the whole of the 5000km, and 2) a constant cross section area -- both of which don't apply. Also, 3) The units are in length which requires oddball conversion constants be thrown in and handled properly just to get to the real meaning that the straightforward units give you for free. The point is, we shouldn't dwell on FBL. Any graphs should present the Specific Strength in its straightforward units as the parameter of concern. No graph should mention FBL because it gives FBL undue weight, implying wrongly that FBL is used more than it is.
---Never imply FBL=planetRadius. The graphs use an FBL of 6370 km, Earth's radius. That's because Kvaalen had previously asserted (wrongly, and it was removed) that the minimum necessary (specific strength) is that of an FBL = planet radius. Planet radius is indeed a factor, but not a one-to-one factor as stated by kVaalen. In fact, quite the opposite(!). Larger surface radius by itself decreases the necessary distance needed to dip into the "gravity well", thus decreasing the required specificStrength/FBL. Okay okay, of course, as radius increases, so does surface gravity which would tend to increase required specificStrength/FBL. Then there's rotation rate and planet density that factor prominently into the matter. And, there's all the practical design factors like strengthening for point loads, etc. There's also the Clarke source saying "5000km" which is far from 6370km. The point is, the idea of FBL=planetRadius is wrong. The graphs use FBL of 6370km, wrongly implying some significance of planet radius. We shouldn't do that. That's one of the reasons they were removed. 40.117.60.104 (talk) 00:58, 10 February 2019 (UTC)
- Mr 104, you moved my replies from under the portions they apply to to way down under, and accused me of being aggressive for putting them where I did. I think that's unfair. But anyway, here are my replies. Eric Kvaalen (talk) 10:41, 11 February 2019 (UTC)
- You're right. Sorry. I saw soon afterward that the comment was formatted in a way that made it look like three separate comments. My fault there with the "booby-trapped" formatting. That's all water under the bridge to me now though. Also, when I ejected the comments (from inside mine) I didn't really know where to put them. I just had to make my best guess. You're right to "fix 'em up" below, and you're justified in being a little indignant too. My apologies. :-) 40.117.60.104 (talk) 20:39, 11 February 2019 (UTC)
- This first one was under your heading "The graphs themselves suck":
- Mr 104, you moved my replies from under the portions they apply to to way down under, and accused me of being aggressive for putting them where I did. I think that's unfair. But anyway, here are my replies. Eric Kvaalen (talk) 10:41, 11 February 2019 (UTC)
- The use of altitude divided by free breaking length falls right out of the integral for the (minimal) total mass. I used the same range of altitude in each graph, as you can see from the fact that the maximum (the geostationary altitude) is at the same place relative to the whole range. Using this scale makes it that the integral under the curve which gives the minimal total mass is easy to estimate. To say that we can't use a smart way of graphing something because it might reveal too much is silly. You say you're a fair expert. Can you elaborate? Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- This one was under your heading "Free breaking length is relatively unimportant."
- I did not say that "minimum necessary (specific strength) is that of an FBL = planet radius". I said, "In order for a space elevator to be realistic, the characteristic length has to be on the order of r0, the radius of the earth, which is 6377 km." That was removed, but it happens to be true. The factors that you mention such as planet density only come into play through the ratio of FBL to planet radius. There is a relatively minor effect of what we have called x, the ratio of centrifugal force to gravity at the planet surface, and the cube root of x which is the ratio of the planet radius to the "planet-stationary" radius. If you like I will show you that the Clarke value is related to the planet radius (which it is not far from!). Adding strengthening for point loads or whatever will only increase the total mass. The minimum total mass is given by doing the integral which I put in the text (obviously), and that integral corresponds to the area under the curves in my graphs, using the kind of x-axis that I used. Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- And this one was under your heading "Never imply FBL=planetRadius."
- No, you're wrong. The FBL is relevant, because of the equation (given in Aravind) that shows that it is [Earth radius]/FBL which matters. That is the critical parameter. Eric Kvaalen (talk) 06:51, 10 February 2019 (UTC)
- The taper ratio is exp(Rearth/FBL x Correction factor), and the "correction factor" for Earth is ~ 0.778 : this is why Clarke states that a cable should have "sufficient strength to support 5000 km (actually, 4960)" : when FBL = Rearth x Correction factor the tapered cable has an e=2.71828 taper, but which is more, that is the minimal value for which a non-tapered cable would do the trick - this is what he had in mind, otherwise the precision is incomprehensible. Biem (talk) 09:06, 10 February 2019 (UTC)
- See my comments lower down. Eric Kvaalen (talk) 10:41, 11 February 2019 (UTC)
Suggestions
Eric Kvaalen, If I were you, I would not insist on keeping those specific pictures, which have indeed a lot to be criticized against them. Maybe you can draw a new pair of graphics taking into account the comments that have been made :
- The "free breaking length" is a mathematical concept, computed assuming a "constant gravity". For obvious reasons, "constant gravity" is not possible for the lengths involved, so this really just reflects a physical property of the material, not a "real" distance to be measured somewhere. So though a useful comparison figure, the concept itself is potentially misleading and should be given a low profile. So, please, don't mention it.
- The formula given in Space elevator#Cable material is documented by itself, but its consequences are not.
- It indeed means that to make a space elevator on a planet, the "free breaking length" of the material under ground gravity should be of the order of magnitude of the planet radius (not an exact value). Some contributors seem to feel uncomfortable about that, but that is exactly what the equation means, once the property of the exponential function are considered (and those who don't know those properties should have a brief update - or stay out of the discussion). I think this has been clarified.
- But this neglects the fact that the corrective factor (the one that takes into account the rotational speed) should be considered (though it won't change the order of magnitude);
- And that value is but a fuzzy milestone when tapered cables are considered (cables can be made not quite reaching this value).
- If you want a "real sharp value", you must consider a cylindrical cable, not a tapered one, and take into account the corrective factor. This is (to my knowledge) what Arthur C. Clarke has in mind and computed in his adress. The corresponding maths is straightforward (same equation of gravitational field, but instead of a dS/S you integrate a dF, but since the primitive on the right side will be the same, it's yielding the same limit value - those who master the elevator equations will know what I mean). But though not worthy of a scientific article, that is undocumented (as far as I know) and therefore best left unmentioned in the Wikipedia article.
Now, beyond the (relatively irrelevant) discussion around the link between free breaking length and Earth's radius, I think a couple of graphics may help the reader to understand why material characteristics make a crucial difference "around these values". But your choice having been proved polemical, I would suggest this :
- To apply the documented formula documented in the article, and make a graph out of it, obviously is not original research. Indeed, "Adding a plot created from a published and referenced equation is not original research". The problem, if any, lies in the choice of "FBL" parameter in both examples.
- There is no need to insist on taking the Earth's radius as reference free breaking length, since that is not the "sharp value" anyway. Actually, it would be better to take into account the corrective factor. And better yet, since Arthur C. Clarke has given that precise 4960 km value - just use it as a documented value as a starting point. (really, who cares?)
- Though the "surface" scale will obviously be different (unless you use a log diagram?), do use the same scale for altitudes in both diagrams, for comparison purposes.
Well ... that's about it. I'd be glad to answer any question. Biem (talk) 17:53, 10 February 2019 (UTC)
First of all, I will go ahead and show how to calculate the minimal specific strength needed for an untapered cable which descends from the geostationary altitude. First let's define g0 as where is the earth's radius. The total weight per mass is the integral of the gravity minus centrifugal force:
Since , this simplifies to:
or simply So the cable has to be able to hold up the equivalent of under gravitation . Actually, the net force at the earth's surface is . So we find that the free breaking length is or 0.926 times the earth's radius, or 5904 kilometres. Apparently Clarke didn't think about the fact that there is a term of . But anyway this shows that the value is, to a first approximation (when we ignore x), the radius of the earth.
Now, concerning your points, I don't agree that the "free breaking length" should be left out of the discussion. It is found right there in the equation for the taper, where we have I'm not sure what you mean by "a real sharp value". Clarke's value is not really sharper than the radius of the earth, and anyway, as I have just showed above, he left out a certain term (so the correct value for an untapered cable is twice as close to the radius of the earth than what he said).
I could perhaps find a way to put both a scale of kilometres and my scale where I divide by Lc, but I really think my scale is needed in order to show how the minimal total mass of the contraption depends on Lc. Although the amount of taper depends mostly on the ratio of Lc to the planet's radius, the minimal total mass of the system also depends on how long the cable is, not just on how thick it gets. (The mass of the counterweight does not enter into the minimal total mass, because the minimal value, or lower limit to be more accurate, is approached as the cable becomes infinitely long and the counterweight mass goes to zero.) This means that if we slowed the planet's rotation (that is, we lower x) the minimal total mass would increase. The scale I used for the abscissa allows the viewer to immediately get an idea of the size of the integral that gives the minimal total mass.
Would the other editors agree to my graphs if I used some other values of Lc, but values which would show that the total mass sky-rockets when the value drops significantly below the radius of the earth, or Clarke's number?
Eric Kvaalen (talk) 10:41, 11 February 2019 (UTC)
- My, my, my... You've got the integration wrong. Please check and correct it before any further development. Yours, Biem (talk) 17:49, 11 February 2019 (UTC)
- Hi guys. I think this is good progress. Just a few comments:
1) I'm assuming, Biem, that by "cylindrical" you mean "constant cross-section area", with the actual shape of the x-section area being unimportant to the strength problem.
2) In an ideal of "presentation goodness", I suggest the height axis start at the center of the earth (to show relative scale compared to earth), then proceed upward graduated in km with zero being at the surface. The distance between zero and GEO should be the same on all graphs (if there's more than one).
3) I'm not actually opposed to going beyond GEO as long as the height scale is consistent between graph(s). 40.117.60.104 (talk) 21:16, 11 February 2019 (UTC) - Just thought of: Make the graph(s) in the .svg format so they're easily editable. That way, nobody can complain about nit-noids, they can just fix them. 40.117.60.104 (talk) 21:23, 11 February 2019 (UTC)
- Hi guys. I think this is good progress. Just a few comments:
- Statement above:
My, my, my... You've got the integration wrong. Please check and correct it before any further development.
This is exactly why we have a prohibition on OR. I'm not opposed to adding graphs, I want to see the citation for the formula. Evidently what's going on here is well beyond the WP:CALC standard ofcalculation is obvious, correct, and a meaningful reflection of the sources
. How many screenfuls have we now dedicated to what should have been a trivial discussion of "where is the WP:RS documenting this interpretation?" Tarl N. (discuss) 21:42, 11 February 2019 (UTC)
- Biem, please explain why you say I have the integration wrong. Tarl N., there's nothing wrong with talking on the talk page about whether an equation is correct or not, or about whether a cited source is correct or not. This business about so-called "original research" is not about talk pages. Do you see something wrong with my integration? If so, speak up. In any case I'm goin' to bed. Eric Kvaalen (talk) 21:51, 11 February 2019 (UTC)
- That's the point. We're not here to sanity check your calculations - that stage of publication is done in WP:RS. Publishing reviews are what define them as reliable. What Wikipedia editors should do when reviewing article changes is ensure that additions reflect what the cited sources say. A wikipedia article takes an expert to write, but must be left in a state where a librarian not expert in the subject matter can maintain it against arbitrary and potentially incorrect changes. When we have disagreement about the correctness of symbolic integration, we're well beyond the "obvious" stage. That's long been a problem for this article, but we don't need to make it worse. Tarl N. (discuss) 22:08, 11 February 2019 (UTC)
- I think if Kvaalen wants to make plots, let him make plots. If they're ultimately found to be based on complex integrations, done by him, then reviewed/corrected by peers on this page -- just like they do in real research -- well then maybe that will serve as an excellent example of what "original research" really is. It will be useful and enlightening if only for that reason. Who knows? Maybe he'll find a good cite for it. That would transform it all from "ugly pre-OR" to "additional support for the non-dubiousness of the source", which would be good. 40.117.60.104 (talk) 23:07, 11 February 2019 (UTC)
- That's the point. We're not here to sanity check your calculations - that stage of publication is done in WP:RS. Publishing reviews are what define them as reliable. What Wikipedia editors should do when reviewing article changes is ensure that additions reflect what the cited sources say. A wikipedia article takes an expert to write, but must be left in a state where a librarian not expert in the subject matter can maintain it against arbitrary and potentially incorrect changes. When we have disagreement about the correctness of symbolic integration, we're well beyond the "obvious" stage. That's long been a problem for this article, but we don't need to make it worse. Tarl N. (discuss) 22:08, 11 February 2019 (UTC)
- Biem, please explain why you say I have the integration wrong. Tarl N., there's nothing wrong with talking on the talk page about whether an equation is correct or not, or about whether a cited source is correct or not. This business about so-called "original research" is not about talk pages. Do you see something wrong with my integration? If so, speak up. In any case I'm goin' to bed. Eric Kvaalen (talk) 21:51, 11 February 2019 (UTC)
Biem, you're right. I got mixed up with too many minus signs. So the correct integral is:
Since , this simplifies to:
or simply So it's true what I said, that Clarke forgot a term, but I had it with the wrong sign. And it's true that to a first approximation (ignoring x) it's the planet radius.
Note that if one used this minimal free breaking length in an untapered design the contraption would be unable to lift any weight. As soon as you attach something to the bottom of the cable, it will break at the geostationary altitude.
But as I said, there's nothing wrong with doing an integration on a talk page. That is not what the "original research" law is about. (I don't like using such a high-falutin' term for a simple integration, but never mind.)
So now, what about my question? Do you agree to my graphs if I use some other values of Lc, but values which would show that the total mass sky-rockets when the value drops significantly below the radius of the earth? (I don't like the idea of using the Clarke value because that was for an untapered design, whereas my graphs are talking about tapered designs.)
Eric Kvaalen (talk) 03:23, 12 February 2019 (UTC)
- Since we seem to have an inherent disagreement over this being WP:OR, WP:SYNTH or entirely acceptable, I've asked for help from
WP:NORWP:ORN. See Wikipedia:No_original_research/Noticeboard#Space_elevator. Tarl N. (discuss) 03:33, 12 February 2019 (UTC)
- I repeat, the "original research" law doesn't apply to talk pages. Nor does the thing about "synthesis". Eric Kvaalen (talk) 06:38, 12 February 2019 (UTC)
Talk pages are for discussion of how to best maintain the article Let's keep it on that. Going over new work like this is better done somewhere else. As of now, this kind of talk would be significant WP:OR if it were it to be introduced into the main article. Discussing it here when there's no sign of a source means you're discussing something that has nothing to do with the article, and would be immediately reverted if it was introduced without a source. A talk page is not a place for the educational enlightenment of the editors (apart from short digressions), nor is it a place for peer review like this. If anybody wants to participate in a salon, please do. Talk amongst yourselves, somewhere else! 40.117.60.104 (talk) 04:54, 12 February 2019 (UTC)
Mr 104 (I wonder whether you are actually Skyway from the way you talk), we've been talking here about whether the Clarke value has something to do with the earth's radius since back on the 9th of February, and it was Tarl who contested that. Even you have said that it is "far from" the radius of the earth, and that the radius of the earth has nothing to do with what the free breaking length should be. And then when I prove that the free breaking length for an untapered cable (what Clarke tried to give) has to be more than a value which to a first approximation is the earth's radius, you suddenly say we can't talk about that on a talk page!
Now can you two get back to my question? What values of the free breaking length do you think I should use?
Eric Kvaalen (talk) 06:38, 12 February 2019 (UTC)
- What do your reliable sources use? Tarl N. (discuss) 06:44, 12 February 2019 (UTC)
- Come off it, Tarl. A person can make a graph without having to have a "source" for the values of the parameters! Eric Kvaalen (talk) 10:58, 12 February 2019 (UTC)
The result sounds correct this time. As I said above, the integration of the right hand part is in fact the same as the one when the cable is tapered, so you should end up with the same correction factor and the same limit value.
Now, since the discussion here is not about the value of the free breaking length, but the parameter of a graph, I would suggest to use the 4960 km value given by Clarke in his conference, which is not far from the one just computed, and use the conference as a source. As long as it is of the same order of magnitude (the difference is a few percent, as far as I recall) the profile won't differ significantly from one value to the other ; and the point is not to build a cable with precisely that resistance, but to show the dramatic effect of having but one tenth of it. Biem (talk) 12:22, 12 February 2019 (UTC)
- Wikipedia former featured articles
- Featured articles that have appeared on the main page
- Featured articles that have appeared on the main page once
- All unassessed articles
- C-Class Architecture articles
- Mid-importance Architecture articles
- C-Class Engineering articles
- Mid-importance Engineering articles
- WikiProject Engineering articles
- C-Class Civil engineering articles
- Unknown-importance Civil engineering articles
- WikiProject Civil engineering articles
- C-Class spaceflight articles
- Mid-importance spaceflight articles
- WikiProject Spaceflight articles
- Wikipedia requests for comment