Occlusion (dentistry): Difference between revisions
Added title on guidance, natural teeth and function |
→Guidance, Natural Teeth and Function: added posterior guidance- lateral excursions |
||
Line 62: | Line 62: | ||
== Guidance, Natural Teeth and Function == |
== Guidance, Natural Teeth and Function == |
||
Mandibular movements are guided by two different systems; the ‘posterior’ determinants and the ‘anterior’ determinants. |
Mandibular movements are guided by two different systems; the ‘posterior’ determinants and the ‘anterior’ determinants. |
||
=== Posterior Guidance === |
|||
Posterior guidance refers to TMJ articulations and associated structures (ligaments, disc and musculature) determining mandibular movements. |
|||
====== ''Lateral Excursions'' ====== |
|||
* The maximum lateral movement of the mandible is approximately 10-12mm<ref name=":2" /> |
|||
* The primary movement in lateral excursions occurs on the non-working side (NWS) condyle (also called the balancing or orbiting condyle). The NWS condylar head moves in a downward, forward and medial direction. This movement is defined against two seperate planes |
|||
** Bennet angle - the angle of medial movement to the vertical plane |
|||
** Condylar angle - the angle of downwards movement to the horizontal plane |
|||
* The working side (WS) condyle (also called the rotating condyle) undergoes an immediate, non-progressive lateral shift. This movement is called the '''Bennet movement''' or an immediate side shift. The condyle is seen to rotate with a slight lateral shift in the direction of movement<ref name=":3" /> |
|||
<br /> |
|||
== See also == |
== See also == |
||
Revision as of 21:29, 19 February 2019
Occlusion, in a dental context, means simply the contact between teeth.[1] More technically, it is the relationship between the https://en.wikipedia.org/enwiki/w/index.php?title=Occlusion_(dentistry)&action=editmaxillary (upper) and mandibular (lower) teeth when they approach each other, as occurs during chewing or at rest.
Static occlusion refers to contact between teeth when the jaw is closed and stationary, while dynamic occlusion refers to occlusal contacts made when the jaw is moving.[1]
The masticatory system also involves the periodontium, the TMJ (and other skeletal components) and the neuromusculature, therefore the tooth contacts should not be looked at in isolation.
Anatomical Basis of Occlusion
This section needs expansion. You can help by adding to it. (February 2019) |
Development of Occlusion
As the primary (baby) teeth begin to erupt at 6 months of age, the maxillary and mandibular teeth aim to occlude with one another. The erupting teeth are moulded into position by the tongue, the checks and lips during development. Upper and lower primary teeth should be correctly occluding and aligned after 2 years whilst they are continuing to develop, with full root development complete at 3 years of age.
Around a year after development of the teeth is complete, the jaws continue to grow which results in spacing between some of the teeth (diastema). This effect is greatest in the anterior (front) teeth and can be seen from around age 4 – 5 years.[2] This spacing is important as it allows space the permanent (adult) teeth to erupt into the correct occlusion, and without this spacing there is likely to be crowding of the permanent dentition.
In order to fully understand the development of occlusion and malocclusion, it is important to understand the premolar dynamics in the mixed dentition stage (when both primary and permanent teeth are present). The permanent premolars erupt ~9–12 years of age, replacing the primary molars. The erupting premolars are smaller than the teeth they are replacing and this difference in space between the primary molars and their successors (1.5mm for maxillary, 2.5mm for mandibular[3]). is termed Leeway Space. This allows the permanent molars to drift mesially into the spaces and develop a Class I occlusion.
Incisor and Molar Classification
In order to describe the relationship of the maxillary molars to the mandibular molars, the Angle’s classification of malocclusion has commonly been used for many years.[4] This system has also been adapted in an attempt to classify the relationship between the incisors of the two arches.[5]
Incisor Relationship
When describing the relationship between maxillary and mandibular incisors, the following categories may be referred to:
- Class I: Mandibular incisors contact the maxillary incisors in the middle third or on the cingulum of the palatal surface
- Class II: Mandibular incisors contact the maxillary incisors on the palatal surface, in the gingival third or posterior to the cingulum. This class may be further subdivided into division I and division II:
- Division I includes maxillary incisors which are proclined (90%) and these individuals have a greater overjet (horizontal overlap)
- Division II includes those with retroclined (10%) incisors, which leads to an increase in overbite (vertical overlap)[6]
- Class III: Mandibular incisors occlude with the maxillary incisors on the palatal surface, in the incisal third specifically or anterior to the cingulum
- In some cases the overjet is reversed (<0mm) and the mandibular incisors lie anterior to the maxillary incisors
Molar Relationship
When discussing the occlusion of the posterior teeth, the classification refers to the first molars and may be divided into three categories:
- Class I: The mandibular first molar occludes mesially to the maxillary first molar, with the mesiobuccal cusp of maxillary first molar occluding in the buccal groove of mandibular first molar
- Class II: The mesiobuccal cusp of the maxillary first molar occludes anterior to the buccal groove of the mandibular first molar
- Class III: If the mesiobuccal cusp of the maxillary first molar occludes posterior to the buccal groove of the mandibular first molar[4]
Classification of occlusion and malocclusion play an important role in diagnosis and treatment planning. Class I relationships are thought to be “ideal”, however this classification does not take into consideration the positions of the TMJ’s . Class II and III molar and incisor relationships are thought to be forms of malocclusion, however not all of these are severe enough to require orthodontic treatment.
Occlusal Terminology
Intercuspal Position (ICP), also known as Habitual Bite, Habitual Position or Bite of Convenience , is defined at the position where the maxillary and mandibular teeth fit together in maximum intercuspation. This position is usually the most easily recorded and is almost always is the occlusion the patient closes into when they are asked to 'bite together'. This is the occlusion that the patient is accustomed to, hence sometimes termed the Habitual Bite.[1]
Centric relation (CR) describes a reproducible jaw relationship (between the mandible and maxilla) and is independent of tooth contact. This is the position in which the mandibular condyles are located in the fossae in an antero-superior position in against the posterior slope of the articular eminence.[7] In CR, the muscles are in their most relaxed and least stressed state.
When the mandible is in this retruded position, it opens and closes on an arc of curvature around an imaginary axis drawn through the centre of the head of both condyles. This imaginary axis is termed the terminal hinge axis. The first tooth contact that occurs when the mandible closes in the terminal hinge axis position, this is termed Retruded Contact Position (RCP).[8] RCP can be reproduced within 0.08mm of accuracy due to the non-elastic TMJ capsule and restriction by the capsular ligaments, thus it can be considered a ‘border movement’ in Posselt’s envelope.[9]
Centric Occlusion (CO) is a confusing term, and is often incorrectly used synonymously with RCP. Both terms are used to define a position where the condyles are in CR, however RCP describes the initial tooth contact on closure (this may be an interference contact), whereas CO refers to the occlusion where the teeth are in maximum intercuspation in CR. Posselt (1952) determined that only in 10% of natural tooth and jaw relationships does ICP = CO [9] (maximum intercuspation in CR) and so the term RCP is more appropriate when discussing the occlusion that occurs when the condyles are in their retruded position. CO is a term that is more relevant to complete denture application, where the occlusion of denture teeth is arranged so that when the mandible is in CR, the teeth are in ICP.
Posselts Envelope of Border Movements
Posselt’s Envelope of Border Movement is a schematic diagram of the maximum jaw movement in three planes (sagittal, horizontal and frontal). This encompasses all movements away from ICP, and includes:
- Protrusive movements: When the mandible moves forward from ICP, this is considered as protrusion. The predominant contacts occur on the incisal and labial surfaces of the mandibular incisors and the incisal edges and lingual fossa areas of the maxillary incisors.[2]
- Lateral movements: When the mandible moves to the left or right, the mandibular posterior teeth move laterally across their opposing teeth in different directions. For example, when the mandible moves to the right, the right mandibular posteriors move laterally across their opposing teeth and this is termed the working side (the side to which the mandible is moving). In contrast, the left mandibular posteriors move medially across their opposing posteriors and this is called the non-working side (the side to which the mandible is moving away from).
- Retrusive movements: This is when the mandible moves posteriorly from ICP. Compared with protrusive and lateral movements, retrusive movements are generally considerably smaller with a range of movement around 1 or 2 mm due to restriction by the ligamentous structures.[10]
Guidance, Natural Teeth and Function
Mandibular movements are guided by two different systems; the ‘posterior’ determinants and the ‘anterior’ determinants.
Posterior Guidance
Posterior guidance refers to TMJ articulations and associated structures (ligaments, disc and musculature) determining mandibular movements.
Lateral Excursions
- The maximum lateral movement of the mandible is approximately 10-12mm[10]
- The primary movement in lateral excursions occurs on the non-working side (NWS) condyle (also called the balancing or orbiting condyle). The NWS condylar head moves in a downward, forward and medial direction. This movement is defined against two seperate planes
- Bennet angle - the angle of medial movement to the vertical plane
- Condylar angle - the angle of downwards movement to the horizontal plane
- The working side (WS) condyle (also called the rotating condyle) undergoes an immediate, non-progressive lateral shift. This movement is called the Bennet movement or an immediate side shift. The condyle is seen to rotate with a slight lateral shift in the direction of movement[2]
See also
- Dahl effect
- Malocclusion – "bad bite"
- Maximum intercuspation, formerly known as centric occlusion – the bite in which all the teeth are closed together in their natural and physiologic position
- Mutually protected occlusion – the way front and back teeth protect each other
- Occlusal splint – used to treat malocclusions and bruxism
- Occlusal trauma – problems that arise from untreated damaging occlusions
- Overeruption
- Vertical dimension of occlusion – a type of jaw measurement
References
- ^ a b c Davies, S; Gray, R M J (2001-09-08). "Occlusion: What is occlusion?". British Dental Journal. 191 (5): 235–245. doi:10.1038/sj.bdj.4801151. ISSN 0007-0610.
- ^ a b c author., Nelson, Stanley J.,. Wheeler's dental anatomy, physiology, and occlusion. ISBN 9780323263238. OCLC 879604219.
{{cite book}}
:|last=
has generic name (help)CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - ^ Thérèse., Welbury, Richard R.. Duggal, Monty S.. Hosey, Marie. Paediatric dentistry. ISBN 0198789270. OCLC 1037154226.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ a b Salzmann, J.A. (June 1965). "The Angle classification as a parameter of malocclusion". American Journal of Orthodontics. 51 (6): 465–466. doi:10.1016/0002-9416(65)90243-5. ISSN 0002-9416.
- ^ Institution., British Standards (1983). British standard glossary of dental terms = Glossaire des termes utilisés en art dentaire. British Standards Institution. OCLC 567637490.
- ^ Birgit., Thilander, (2017). Essential Orthodontics. John Wiley & Sons, Incorporated. ISBN 9781119165682. OCLC 990715482.
{{cite book}}
: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - ^ "The Glossary of Prosthodontic Terms". The Journal of Prosthetic Dentistry. 117 (5): C1 – e105. May 2017. doi:10.1016/j.prosdent.2016.12.001.
- ^ David., Ricketts, (2014). Advanced Operative Dentistry : a Practical Approach. Elsevier Health Sciences. ISBN 9780702046971. OCLC 1048579292.
{{cite book}}
: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - ^ a b Ulf, Posselt, (1952). Studies in the mobility of the human mandible. OCLC 252899547.
{{cite book}}
: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - ^ a b P., OKESON, JEFFREY (2019). Management of temporomandibular disorders and occlusion. MOSBY. ISBN 0323582109. OCLC 1049824448.
{{cite book}}
: CS1 maint: multiple names: authors list (link)