Jump to content

MRB constant: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
rewrote definition of series to be more direct
mNo edit summary
Line 1: Line 1:
[[File:MRB-Gif.gif|thumb|right|195px|First 100 partial sums of <math>(-1)^k (k^{1/k} - 1)</math>]]The '''MRB constant,''' is a [[mathematical constant]], with decimal expansion {{nowrap|0.187859…}} {{OEIS|A037077}}. The constant is named after its discoverer, Marvin Ray Burns, who published his discovery of the constant in 1999.<ref>{{cite web|url=http://www.plouffe.fr/simon/constants/mrburns.txt|title=mrburns|last=Plouffe|first=Simon|accessdate=12 January 2015}}</ref> Burns had initially called the constant "rc" for root constant<ref>{{cite web|url=http://math2.org/mmb/thread/901|title=RC|last=Burns|first=Marvin R.|date=23 January 1999|website=math2.org|accessdate=5 May 2009}}</ref> but, at [[Simon Plouffe|Simon Plouffe's]] suggestion, the constant was renamed the 'Marvin Ray Burns's Constant', or "MRB constant".<ref>{{cite web|url=http://www.plouffe.fr/simon/articles/Tableofconstants.pdf|title=Tables of Constants|last=Plouffe|first=Simon|date=20 November 1999|publisher=Laboratoire de combinatoire et d'informatique mathématique|accessdate=5 May 2009}}</ref>
[[File:MRB-Gif.gif|thumb|right|195px|First 100 partial sums of <math>(-1)^k (k^{1/k} - 1)</math>]]The '''MRB constant,''' is a [[mathematical constant]], with decimal expansion {{nowrap|0.187859…}} {{OEIS|A037077}}. The constant is named after its discoverer, Marvin Ray Burns, who published his discovery of the constant in 1999.<ref>{{cite web|url=http://www.plouffe.fr/simon/constants/mrburns.txt|title=mrburns|last=Plouffe|first=Simon|accessdate=12 January 2015}}</ref> Burns had initially called the constant "rc" for root constant<ref>{{cite web|url=http://math2.org/mmb/thread/901|title=RC|last=Burns|first=Marvin R.|date=23 January 1999|website=math2.org|accessdate=5 May 2009}}</ref> but, at [[Simon Plouffe|Simon Plouffe's]] suggestion, the constant was renamed the 'Marvin Ray Burns's Constant', or "MRB constant".<ref>{{cite web|url=http://www.plouffe.fr/simon/articles/Tableofconstants.pdf|title=Tables of Constants|last=Plouffe|first=Simon|date=20 November 1999|publisher=Laboratoire de combinatoire et d'informatique mathématique|accessdate=5 May 2009}}</ref>


The MRB constant is defined as the [[upper limit]] of the sums<ref name="Weisstein" /><ref>{{cite arXiv|arxiv=0912.3844|first=Richard J.|last=Mathar|title=Numerical Evaluation of the Oscillatory Integral Over exp(iπx) x^*1/x) Between 1 and Infinity}}</ref><ref>{{cite web|url=http://www.perfscipress.com/papers/UniversalTOC25.pdf|title=Unified algorithms for polylogarithm, L-series, and zeta variants|last=Crandall|first=Richard|publisher=PSI Press|archiveurl=https://web.archive.org/web/20130430193005/http://www.perfscipress.com/papers/UniversalTOC25.pdf|archivedate=April 30, 2013|deadurl=yes|accessdate=16 January 2015}}</ref><ref>{{OEIS|id=A037077}}</ref><ref>{{OEIS|id=A160755}}</ref><ref>{{OEIS|id=A173273}}</ref><ref>{{cite web|url=http://www.bitman.name/math/article/962|title=MRB (costante)|last=Fiorentini|first=Mauro|website=bitman.name|language=italian|accessdate=14 January 2015}}</ref>
The MRB constant is defined as the [[upper limit]] of the [[partial sums]]<ref name="Weisstein" /><ref>{{cite arXiv|arxiv=0912.3844|first=Richard J.|last=Mathar|title=Numerical Evaluation of the Oscillatory Integral Over exp(iπx) x^*1/x) Between 1 and Infinity}}</ref><ref>{{cite web|url=http://www.perfscipress.com/papers/UniversalTOC25.pdf|title=Unified algorithms for polylogarithm, L-series, and zeta variants|last=Crandall|first=Richard|publisher=PSI Press|archiveurl=https://web.archive.org/web/20130430193005/http://www.perfscipress.com/papers/UniversalTOC25.pdf|archivedate=April 30, 2013|deadurl=yes|accessdate=16 January 2015}}</ref><ref>{{OEIS|id=A037077}}</ref><ref>{{OEIS|id=A160755}}</ref><ref>{{OEIS|id=A173273}}</ref><ref>{{cite web|url=http://www.bitman.name/math/article/962|title=MRB (costante)|last=Fiorentini|first=Mauro|website=bitman.name|language=italian|accessdate=14 January 2015}}</ref>


: <math>s_n = \sum_{k=1}^n (-1)^k k^{1/k}</math>
: <math>s_n = \sum_{k=1}^n (-1)^k k^{1/k}</math>


As <math>n</math>grows to infinity, the sums have upper and lower [[limit point]]s of −0.812140… and 0.187859…, separated by an [[interval (mathematics)|interval]] of length 1, with. The constant can also be explicitly defined by the following infinite sums:<ref name="Weisstein">{{MathWorld |title=MRB Constant |urlname=MRBConstant}}</ref>
As <math>n</math> grows to infinity, the sums have upper and lower [[limit point]]s of −0.812140… and 0.187859…, separated by an [[interval (mathematics)|interval]] of length 1, with. The constant can also be explicitly defined by the following infinite sums:<ref name="Weisstein">{{MathWorld |title=MRB Constant |urlname=MRBConstant}}</ref>
: <math>0.187859\ldots = \sum_{k=1}^{\infty} (-1)^k (k^{1/k} - 1) = \sum_{k=1}^{\infty} \left((2k)^{1/(2k)} - (2k-1)^{1/(2k-1)}\right).</math>
: <math>0.187859\ldots = \sum_{k=1}^{\infty} (-1)^k (k^{1/k} - 1) = \sum_{k=1}^{\infty} \left((2k)^{1/(2k)} - (2k-1)^{1/(2k-1)}\right).</math>



Revision as of 22:16, 29 April 2019

First 100 partial sums of

The MRB constant, is a mathematical constant, with decimal expansion 0.187859… (sequence A037077 in the OEIS). The constant is named after its discoverer, Marvin Ray Burns, who published his discovery of the constant in 1999.[1] Burns had initially called the constant "rc" for root constant[2] but, at Simon Plouffe's suggestion, the constant was renamed the 'Marvin Ray Burns's Constant', or "MRB constant".[3]

The MRB constant is defined as the upper limit of the partial sums[4][5][6][7][8][9][10]

As grows to infinity, the sums have upper and lower limit points of −0.812140… and 0.187859…, separated by an interval of length 1, with. The constant can also be explicitly defined by the following infinite sums:[4]

The constant relates to the divergent series:

There is no known closed-form expression of the MRB constant,[11] nor is it known whether the MRB constant is algebraic, transcendental or even irrational.

References

  1. ^ Plouffe, Simon. "mrburns". Retrieved 12 January 2015.
  2. ^ Burns, Marvin R. (23 January 1999). "RC". math2.org. Retrieved 5 May 2009.
  3. ^ Plouffe, Simon (20 November 1999). "Tables of Constants" (PDF). Laboratoire de combinatoire et d'informatique mathématique. Retrieved 5 May 2009.
  4. ^ a b Weisstein, Eric W. "MRB Constant". MathWorld.
  5. ^ Mathar, Richard J. "Numerical Evaluation of the Oscillatory Integral Over exp(iπx) x^*1/x) Between 1 and Infinity". arXiv:0912.3844.
  6. ^ Crandall, Richard. "Unified algorithms for polylogarithm, L-series, and zeta variants" (PDF). PSI Press. Archived from the original (PDF) on April 30, 2013. Retrieved 16 January 2015. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  7. ^ (sequence A037077 in the OEIS)
  8. ^ (sequence A160755 in the OEIS)
  9. ^ (sequence A173273 in the OEIS)
  10. ^ Fiorentini, Mauro. "MRB (costante)". bitman.name (in Italian). Retrieved 14 January 2015.
  11. ^ Finch, Steven R. (2003). Mathematical Constants. Cambridge, England: Cambridge University Press. p. 450. ISBN 0-521-81805-2.