Jump to content

Rule of product: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
AYGC2004 (talk | contribs)
No edit summary
Tags: Mobile edit Mobile app edit iOS app edit
Line 26: Line 26:


Using the rule of product, you know that there are 2 × 3 = 6 possible combinations of ordering a pizza.
Using the rule of product, you know that there are 2 × 3 = 6 possible combinations of ordering a pizza.

Other tipical example is use it with the [[rule of sum]], in this case we have two group, the group '''A''' with '''3''' elments and the group '''B''' with '''10''' elments. We want to pick one element ( we dont care if is from group A or B) and a second element that must be from the group B. The way that we can chose the elements are:


:<math>
\mathrm{Total}\ \mathrm{ways} = (3*10) + (10*9)
</math>


First, we use the [[rule of product]] to get the number of ways if we pick a element from group '''A''' and then from group '''B'''. After this, we repeat the process but now changing the element of group '''A''' by element of group '''B''' and multiply by the number of element in '''B - 1''' because we pick one of this.


==Applications==
==Applications==

Revision as of 19:55, 7 May 2019

The elements of the set {A, B} can combine with the elements of the set {1, 2, 3} in six different ways.

In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions.[1][2]

Examples


In this example, the rule says: multiply 3 by 2, getting 6.

The sets {A, B, C} and {X, Y} in this example are disjoint sets, but that is not necessary. The number of ways to choose a member of {A, B, C}, and then to do so again, in effect choosing an ordered pair each of whose components is in {A, B, C}, is 3 × 3 = 9.

As another example, when you decide to order pizza, you must first choose the type of crust: thin or deep dish (2 choices). Next, you choose one topping: cheese, pepperoni, or sausage (3 choices).

Using the rule of product, you know that there are 2 × 3 = 6 possible combinations of ordering a pizza.

Other tipical example is use it with the rule of sum, in this case we have two group, the group A with 3 elments and the group B with 10 elments. We want to pick one element ( we dont care if is from group A or B) and a second element that must be from the group B. The way that we can chose the elements are:



First, we use the rule of product to get the number of ways if we pick a element from group A and then from group B. After this, we repeat the process but now changing the element of group A by element of group B and multiply by the number of element in B - 1 because we pick one of this.

Applications

In set theory, this multiplication principle is often taken to be the definition of the product of cardinal numbers.[1] We have

where is the Cartesian product operator. These sets need not be finite, nor is it necessary to have only finitely many factors in the product; see cardinal number.

The rule of sum is another basic counting principle. Stated simply, it is the idea that if we have a ways of doing something and b ways of doing another thing and we can not do both at the same time, then there are a + b ways to choose one of the actions.[3]

See also

References

  1. ^ a b Johnston, William, and Alex McAllister. A transition to advanced mathematics. Oxford Univ. Press, 2009. Section 5.1
  2. ^ "College Algebra Tutorial 55: Fundamental Counting Principle". Retrieved December 20, 2014.
  3. ^ Rosen, Kenneth H., ed. Handbook of discrete and combinatorial mathematics. CRC pres, 1999.