Jump to content

KINARM: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 22: Line 22:


==KINARM Standard Tests==
==KINARM Standard Tests==
The KINARM Standard Tests(KST) form a library of automated behavioural tasks designed for use with KINARMs. The KST database has been extensively used in research publications and has created a universal platform for the comparison of data on neurological function among normal and impaired human populations.<ref>{{cite journal |last = Centen |first = A. |last2 = Lowrey |first2 = C.R. |last3 = Scott |first3 = S.H. |last4 = Yeh |first4 = T.T. |last5 = Mochizuki |first5 = G. |date = June 2017 |title = KAPS(Kinematic Assessment of Passive Stretch): a tool to assess elbow flexor and extensor hypertonicity after stroke using a robotic exoskeleton |journal = Journal of NeuroEngineering and Rehabilitation |volume = 14 |issue = 1 |pages = 59 |doi = 10.1186/s12984-017-0272-8}}</ref><ref>{{cite journal |last = Bourke |first = T.C. |last2 = Lowrey |first2 = C.R. |last3 = Dukelow |first3 = S.P. |last4 = Bagg |first4 = S.D. |last5 = Norman |first5 = K.E. |last6 = Scott |first6 = S.H. |date = October 2016 |title = A robotic task quantifies post-stroke impairments in rapid motor decisions and actions |journal = Journal of NeuroEngineering and Rehabilitation |volume = 13 |issue=91 |doi = 10.1186/s12984-016-0201-2}}</ref><ref>{{cite journal |last = Tyryshkin |first = K. |last2 = Coderre |first2 = A. |last3 = Glasgow |first3 = J.I. |last4 = Herter |first4 = T.M. |last5 = Bagg |first5 = S.D. |last6 = Dukelow |first6 = S.P. |last7 = Scott |first7 = S.H. |date = April 2014 |title = A robotic object hitting task to quantify sensorimotor impairments in participants with stroke |journal = Journal of NeuroEngineering and Rehabilitation |volume = 11 |issue = 1 |pages = 47 |doi = 10.1186/1743-0003-11-47}} </ref>
The KINARM Standard Tests(KST) form a library of automated behavioural tasks designed for use with KINARMs. The KST database has been extensively used in research publications and has created a universal platform for the comparison of data on neurological function among normal and impaired human populations.


==Applications==
==Applications==

Revision as of 17:07, 23 May 2019

  • Comment: This needs a better focus. Is it going to describe KINARMs in general, the BKIN company, or the product line? It could also be summarized in Scott's article as a section with a few paragraphs as he created the original idea. AngusWOOF (barksniff) 14:55, 23 May 2019 (UTC)

Kinesiological Instrument for Normal and Altered Reaching Movement (KINARM)[1] is an interactive robotic device designed to assess the sensorimotor and cognitive function of the brain through behavioural tasks using the upper limb. There are two types of KINARMs - the KINARM Exoskeleton and the KINARM End-Point. The technology is used by both basic and clinical researchers in order to develop a greater understanding of the neurological impacts of a variety of injuries and diseases. KINARMs allow researchers to collect more objective and quantitative data for assessing brain function than traditional methods.[2] The devices are created by BKIN Technologies Ltd. in Kingston, Ontario.

History

The first KINARM robot to be created was the KINARM Exoskeleton. It was developed in 1999 by Stephen Scott, a neuroscientist and researcher at Queen’s University.[3] The KINARM Exoskeleton was commercialized in 2004[4] when BKIN Technologies was founded by Dr. Scott and Dr. Ian Brown with the assistance of PARTEQ Innovations.[5]. After the KINARM Exoskeleton was brought to market, a second KINARM robot called the KINARM End-Point was created.

Product

KINARM robots assess the user's ability to interact with a two-dimensional virtual reality environment using their upper limbs. The KINARM Exoskeleton uses a motorized exoskeleton to measure and manipulate the function of the upper limbs and is produced in both human and non-human primate (NHP) versions. The KINARM End-Point uses hand-held robotic rods and is used primarily for human use. Both robot labs are available with gaze-tracking technology.[6]

The KINARM Exoskeleton Lab.
The KINARM End-Point Lab.

As of 2018, there were roughly 100 KINARM labs distributed in 14 countries worldwide.[7]

KINARM Standard Tests

The KINARM Standard Tests(KST) form a library of automated behavioural tasks designed for use with KINARMs. The KST database has been extensively used in research publications and has created a universal platform for the comparison of data on neurological function among normal and impaired human populations.[8][9][10]

Applications

The KINARM Labs are being used to study the neurological impairments of individuals experiencing a diverse range of damage and disease. These include stroke, transient ischemic attack (TIA), kidney disease, concussion, cerebral palsy, fetal alcohol spectrum disorder (FASD), autism spectrum disorder (ASD), Alzheimer’s disease and other dementias, parkinson’s disease, cerebellar disorders, chronic pain, spinal cord injury, and healthy aging. KINARMs are also being used to understand the effectiveness and side-effects of different clinical treatments for these illnesses.

To date, there are over 275 published peer-reviewed journal articles that use KINARM Labs.[11]

Notably, KINARM Labs are being used for concussion evaluation in high-performance athletes at the Canadian Winter Sport Institute as a part of the Canadian Olympic Committee’s national concussion strategy.[12][13]

See Also

References

  1. ^ https://www.queensjournal.ca/story/2011-05-31/news/professor-invents-paper-thin-phone/
  2. ^ Rhamey, Ashley (Aug 13, 2017). "Robots and research". Kingston Whig-Standard. Kingston. Retrieved May 23, 2019.
  3. ^ Scott, S.H. (July 1999). "Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching". Journal of Neuroscience Methods. 89 (2): 119–127. doi:10.1016/S0165-0270(99)00053-9.
  4. ^ "BKIN Technologies Ltd". Trillium Network for Advanced Manufacturing. Retrieved May 22, 2019.
  5. ^ Mathison, Dick (Nov 23, 2010). "New technology enables better assessment of brain injuries". Kingston Herald. Kingston. Retrieved May 22, 2019.
  6. ^ "KINARM". Physiopedia. May 10, 2018. Retrieved May 22, 2019.
  7. ^ Willson, Andrew (Dec 4, 2018). "Stephen Scott's robot is changing what we know about the brain". Dean's Blog. Queen's University Faculty of Health Sciences. Retrieved May 22, 2019.
  8. ^ Centen, A.; Lowrey, C.R.; Scott, S.H.; Yeh, T.T.; Mochizuki, G. (June 2017). "KAPS(Kinematic Assessment of Passive Stretch): a tool to assess elbow flexor and extensor hypertonicity after stroke using a robotic exoskeleton". Journal of NeuroEngineering and Rehabilitation. 14 (1): 59. doi:10.1186/s12984-017-0272-8.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ Bourke, T.C.; Lowrey, C.R.; Dukelow, S.P.; Bagg, S.D.; Norman, K.E.; Scott, S.H. (October 2016). "A robotic task quantifies post-stroke impairments in rapid motor decisions and actions". Journal of NeuroEngineering and Rehabilitation. 13 (91). doi:10.1186/s12984-016-0201-2.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ Tyryshkin, K.; Coderre, A.; Glasgow, J.I.; Herter, T.M.; Bagg, S.D.; Dukelow, S.P.; Scott, S.H. (April 2014). "A robotic object hitting task to quantify sensorimotor impairments in participants with stroke". Journal of NeuroEngineering and Rehabilitation. 11 (1): 47. doi:10.1186/1743-0003-11-47.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ "Publications by Research Area". BKIN Technologies. Retrieved May 22, 2019.
  12. ^ Fletcher, Robson (Mar 18, 2019). "Canada adopts new national concussion strategy for high-performance athletes". CBC News. Calgary. Retrieved May 22, 2019.
  13. ^ MacQueen, Ken (Jul 17, 2012). "Team Canada's gold medal secrets". MacLean's magazine. Rogers Media. Retrieved May 22, 2019.