Centered polygonal number: Difference between revisions
m Undid revision 896093830 by 101.12.141.95 (talk) WP:DENY banned user Xayahrainie43 |
No edit summary |
||
Line 95: | Line 95: | ||
:<math>\frac{\pi^2}{8}</math>, if ''k'' = 8 |
:<math>\frac{\pi^2}{8}</math>, if ''k'' = 8 |
||
== Table of formulae and values == |
|||
Centered polygonal numbers associated with [[constructible polygons]] (Cf. A003401) (with straightedge and compass) are named in '''bold'''. |
|||
<!--== Wikitable color scheme is: [background: #f2f2f2; for table header] [background: #f9f9f9; for table cells] ==--> |
|||
{| class="wikitable" align="center" border="1" cellspacing="0" cellpadding="4" style="border-collapse: collapse; border: 1px solid darkgray; background: #f9f9f9; color: black; empty-cells: show; text-align: right;" |
|||
|+ '''Centered polygonal numbers formulae and values''' |
|||
|- style="background: #f2f2f2; color: black; text-align: center;" |
|||
! width="25" style="text-align: center;" | ''N''<sub>0</sub> |
|||
! style="text-align: center;" | Name |
|||
! style="text-align: center;" | Formulae |
|||
<math>\,_cP^{(2)}_{N_0}(n)</math> |
|||
! width="50" align="center" | ''n'' = 0 |
|||
! width="50" align="center" | 1 |
|||
! width="50" align="center" | 2 |
|||
! width="50" align="center" | 3 |
|||
! width="50" align="center" | 4 |
|||
! width="50" align="center" | 5 |
|||
! width="50" align="center" | 6 |
|||
! width="50" align="center" | 7 |
|||
! width="50" align="center" | 8 |
|||
! width="50" align="center" | 9 |
|||
! width="50" align="center" | 10 |
|||
! width="50" align="center" | 11 |
|||
! width="75" style="text-align: center;" | OEIS |
|||
number |
|||
|- |
|||
| align="center" | '''3''' |
|||
| align="left" | [[Centered triangular numbers|'''Centered triangular''']] |
|||
| align="center" | <math>3T_n+1\,</math> |
|||
<math>3n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 4 |
|||
| align="right" | 10 |
|||
| align="right" | 19 |
|||
| align="right" | 31 |
|||
| align="right" | 46 |
|||
| align="right" | 64 |
|||
| align="right" | 85 |
|||
| align="right" | 109 |
|||
| align="right" | 136 |
|||
| align="right" | 166 |
|||
| align="right" | 199 |
|||
| align="center" | A005448('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''4''' |
|||
| align="left" | [[Centered square numbers|'''Centered square''']] |
|||
| align="center" | <math>4T_n+1\,</math> |
|||
<math>2n(n+1)+1\,</math> |
|||
<math>n^2+(n+1)^2\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 5 |
|||
| align="right" | 13 |
|||
| align="right" | 25 |
|||
| align="right" | 41 |
|||
| align="right" | 61 |
|||
| align="right" | 85 |
|||
| align="right" | 113 |
|||
| align="right" | 145 |
|||
| align="right" | 181 |
|||
| align="right" | 221 |
|||
| align="right" | 265 |
|||
| align="center" | A001844('''''n''''') |
|||
|- |
|||
| align="center" | '''5''' |
|||
| align="left" | [[Centered pentagonal numbers|'''Centered pentagonal''']] |
|||
| align="center" | <math>5T_n+1\,</math> |
|||
<math>5n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 6 |
|||
| align="right" | 16 |
|||
| align="right" | 31 |
|||
| align="right" | 51 |
|||
| align="right" | 76 |
|||
| align="right" | 106 |
|||
| align="right" | 141 |
|||
| align="right" | 181 |
|||
| align="right" | 226 |
|||
| align="right" | 276 |
|||
| align="right" | 331 |
|||
| align="center" | A005891('''''n''''') |
|||
|- |
|||
| align="center" | '''6''' |
|||
| align="left" | [[Centered hexagonal numbers|'''Centered hexagonal''']] |
|||
[[Hex numbers|'''Hex numbers''']] |
|||
| align="center" | <math>6T_n+1\,</math> |
|||
<math>3n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 7 |
|||
| align="right" | 19 |
|||
| align="right" | 37 |
|||
| align="right" | 61 |
|||
| align="right" | 91 |
|||
| align="right" | 127 |
|||
| align="right" | 169 |
|||
| align="right" | 217 |
|||
| align="right" | 271 |
|||
| align="right" | 331 |
|||
| align="right" | 397 |
|||
| align="center" | A003215('''''n''''') |
|||
|- |
|||
| align="center" | 7 |
|||
| align="left" | [[Centered heptagonal numbers|Centered heptagonal]] |
|||
| align="center" | <math>7T_n+1\,</math> |
|||
<math>7n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 8 |
|||
| align="right" | 22 |
|||
| align="right" | 43 |
|||
| align="right" | 71 |
|||
| align="right" | 106 |
|||
| align="right" | 148 |
|||
| align="right" | 197 |
|||
| align="right" | 253 |
|||
| align="right" | 316 |
|||
| align="right" | 386 |
|||
| align="right" | 463 |
|||
| align="center" | A069099('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''8''' |
|||
| align="left" | [[Centered octagonal numbers|'''Centered octagonal''']] |
|||
| align="center" | <math>8T_n+1\,</math> |
|||
<math>4n(n+1)+1\,</math> |
|||
<math>(2n+1)^2\,</math> |
|||
[[Odd squares]] |
|||
| align="right" | 1 |
|||
| align="right" | 9 |
|||
| align="right" | 25 |
|||
| align="right" | 49 |
|||
| align="right" | 81 |
|||
| align="right" | 121 |
|||
| align="right" | 169 |
|||
| align="right" | 225 |
|||
| align="right" | 289 |
|||
| align="right" | 361 |
|||
| align="right" | 441 |
|||
| align="right" | 529 |
|||
| align="center" | A016754('''''n''''') |
|||
|- |
|||
| align="center" | 9 |
|||
| align="left" | [[Centered nonagonal numbers|Centered nonagonal]] |
|||
| align="center" | <math>9T_n+1\,</math> |
|||
<math>9n(n+1)/2+1\,</math> |
|||
<math>t_{3n+1}\,</math> |
|||
<math>\binom{3n+2}{2}</math> |
|||
| align="right" | 1 |
|||
| align="right" | 10 |
|||
| align="right" | 28 |
|||
| align="right" | 55 |
|||
| align="right" | 91 |
|||
| align="right" | 136 |
|||
| align="right" | 190 |
|||
| align="right" | 253 |
|||
| align="right" | 325 |
|||
| align="right" | 406 |
|||
| align="right" | 496 |
|||
| align="right" | 595 |
|||
| align="center" | A060544('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''10''' |
|||
| align="left" | '''[[Centered decagonal numbers|Centered decagonal]]''' |
|||
| align="center" | <math>10T_n+1\,</math> |
|||
<math>5n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 11 |
|||
| align="right" | 31 |
|||
| align="right" | 61 |
|||
| align="right" | 101 |
|||
| align="right" | 151 |
|||
| align="right" | 211 |
|||
| align="right" | 281 |
|||
| align="right" | 361 |
|||
| align="right" | 451 |
|||
| align="right" | 551 |
|||
| align="right" | 661 |
|||
| align="center" | A062786('''''n'''''+1) |
|||
|- |
|||
| align="center" | 11 |
|||
| align="left" | [[Centered hendecagonal numbers|Centered hendecagonal]] |
|||
| align="center" | <math>11T_n+1\,</math> |
|||
<math>11n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 12 |
|||
| align="right" | 34 |
|||
| align="right" | 67 |
|||
| align="right" | 111 |
|||
| align="right" | 166 |
|||
| align="right" | 232 |
|||
| align="right" | 309 |
|||
| align="right" | 397 |
|||
| align="right" | 496 |
|||
| align="right" | 606 |
|||
| align="right" | 727 |
|||
| align="center" | A069125('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''12''' |
|||
| align="left" | [[Centered dodecagonal numbers|'''Centered dodecagonal''']] |
|||
| align="center" | <math>12T_n+1\,</math> |
|||
<math>6n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 13 |
|||
| align="right" | 37 |
|||
| align="right" | 73 |
|||
| align="right" | 121 |
|||
| align="right" | 181 |
|||
| align="right" | 253 |
|||
| align="right" | 337 |
|||
| align="right" | 433 |
|||
| align="right" | 541 |
|||
| align="right" | 661 |
|||
| align="right" | 793 |
|||
| align="center" | A003154('''''n'''''+1) |
|||
|- |
|||
| align="center" | 13 |
|||
| align="left" | [[Centered tridecagonal numbers|Centered tridecagonal]] |
|||
| align="center" | <math>13T_n+1\,</math> |
|||
<math>13n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 14 |
|||
| align="right" | 40 |
|||
| align="right" | 79 |
|||
| align="right" | 131 |
|||
| align="right" | 196 |
|||
| align="right" | 274 |
|||
| align="right" | 365 |
|||
| align="right" | 469 |
|||
| align="right" | 586 |
|||
| align="right" | 716 |
|||
| align="right" | 859 |
|||
| align="center" | A069126('''''n'''''+1) |
|||
|- |
|||
| align="center" | 14 |
|||
| align="left" | [[Centered tetradecagonal numbers|Centered tetradecagonal]] |
|||
| align="center" | <math>14T_n+1\,</math> |
|||
<math>7n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 15 |
|||
| align="right" | 43 |
|||
| align="right" | 85 |
|||
| align="right" | 141 |
|||
| align="right" | 211 |
|||
| align="right" | 295 |
|||
| align="right" | 393 |
|||
| align="right" | 505 |
|||
| align="right" | 631 |
|||
| align="right" | 771 |
|||
| align="right" | 925 |
|||
| align="center" | A069127('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''15''' |
|||
| align="left" | [[Centered pentadecagonal numbers|'''Centered pentadecagonal''']] |
|||
| align="center" | <math>15T_n+1\,</math> |
|||
<math>15n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 16 |
|||
| align="right" | 46 |
|||
| align="right" | 91 |
|||
| align="right" | 151 |
|||
| align="right" | 226 |
|||
| align="right" | 316 |
|||
| align="right" | 421 |
|||
| align="right" | 541 |
|||
| align="right" | 676 |
|||
| align="right" | 826 |
|||
| align="right" | 991 |
|||
| align="center" | A069128('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''16''' |
|||
| align="left" | [[Centered hexadecagonal numbers|'''Centered hexadecagonal''']] |
|||
| align="center" | <math>16T_n+1\,</math> |
|||
<math>8n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 17 |
|||
| align="right" | 49 |
|||
| align="right" | 97 |
|||
| align="right" | 161 |
|||
| align="right" | 241 |
|||
| align="right" | 337 |
|||
| align="right" | 449 |
|||
| align="right" | 577 |
|||
| align="right" | 721 |
|||
| align="right" | 881 |
|||
| align="right" | 1057 |
|||
| align="center" | A069129('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''17''' |
|||
| align="left" | [[Centered heptadecagonal numbers|'''Centered heptadecagonal''']] |
|||
| align="center" | <math>17T_n+1\,</math> |
|||
<math>17n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 18 |
|||
| align="right" | 52 |
|||
| align="right" | 103 |
|||
| align="right" | 171 |
|||
| align="right" | 256 |
|||
| align="right" | 358 |
|||
| align="right" | 477 |
|||
| align="right" | 613 |
|||
| align="right" | 766 |
|||
| align="right" | 936 |
|||
| align="right" | 1123 |
|||
| align="center" | A069130('''''n'''''+1) |
|||
|- |
|||
| align="center" | 18 |
|||
| align="left" | [[Centered octadecagonal numbers|Centered octadecagonal]] |
|||
| align="center" | <math>18T_n+1\,</math> |
|||
<math>9n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 19 |
|||
| align="right" | 55 |
|||
| align="right" | 109 |
|||
| align="right" | 181 |
|||
| align="right" | 271 |
|||
| align="right" | 379 |
|||
| align="right" | 505 |
|||
| align="right" | 649 |
|||
| align="right" | 811 |
|||
| align="right" | 991 |
|||
| align="right" | 1189 |
|||
| align="center" | A069131('''''n'''''+1) |
|||
|- |
|||
| align="center" | 19 |
|||
| align="left" | [[Centered nonadecagonal numbers|Centered nonadecagonal]] |
|||
| align="center" | <math>19T_n+1\,</math> |
|||
<math>19n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 20 |
|||
| align="right" | 58 |
|||
| align="right" | 115 |
|||
| align="right" | 191 |
|||
| align="right" | 286 |
|||
| align="right" | 400 |
|||
| align="right" | 533 |
|||
| align="right" | 685 |
|||
| align="right" | 856 |
|||
| align="right" | 1046 |
|||
| align="right" | 1255 |
|||
| align="center" | A069132('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''20''' |
|||
| align="left" | [[Centered icosagonal numbers|'''Centered icosagonal''']] |
|||
| align="center" | <math>20T_n+1\,</math> |
|||
<math>10n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 21 |
|||
| align="right" | 61 |
|||
| align="right" | 121 |
|||
| align="right" | 201 |
|||
| align="right" | 301 |
|||
| align="right" | 421 |
|||
| align="right" | 561 |
|||
| align="right" | 721 |
|||
| align="right" | 901 |
|||
| align="right" | 1101 |
|||
| align="right" | 1321 |
|||
| align="center" | A069133('''''n'''''+1) |
|||
|- |
|||
| align="center" | 21 |
|||
| align="left" | [[Centered icosihenagonal numbers|Centered icosihenagonal]] |
|||
| align="center" | <math>21T_n+1\,</math> |
|||
<math>21n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 22 |
|||
| align="right" | 64 |
|||
| align="right" | 127 |
|||
| align="right" | 211 |
|||
| align="right" | 316 |
|||
| align="right" | 442 |
|||
| align="right" | 589 |
|||
| align="right" | 757 |
|||
| align="right" | 946 |
|||
| align="right" | 1156 |
|||
| align="right" | 1387 |
|||
| align="center" | A069178('''''n'''''+1) |
|||
|- |
|||
| align="center" | 22 |
|||
| align="left" | [[Centered icosidigonal numbers|Centered icosidigonal]] |
|||
| align="center" | <math>22T_n+1\,</math> |
|||
<math>11n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 23 |
|||
| align="right" | 67 |
|||
| align="right" | 133 |
|||
| align="right" | 221 |
|||
| align="right" | 331 |
|||
| align="right" | 463 |
|||
| align="right" | 617 |
|||
| align="right" | 793 |
|||
| align="right" | 991 |
|||
| align="right" | 1211 |
|||
| align="right" | 1453 |
|||
| align="center" | A069173('''''n'''''+1) |
|||
|- |
|||
| align="center" | 23 |
|||
| align="left" | [[Centered icositrigonal numbers|Centered icositrigonal]] |
|||
| align="center" | <math>23T_n+1\,</math> |
|||
<math>23n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 24 |
|||
| align="right" | 70 |
|||
| align="right" | 139 |
|||
| align="right" | 231 |
|||
| align="right" | 346 |
|||
| align="right" | 484 |
|||
| align="right" | 645 |
|||
| align="right" | 829 |
|||
| align="right" | 1036 |
|||
| align="right" | 1266 |
|||
| align="right" | 1519 |
|||
| align="center" | A069174('''''n'''''+1) |
|||
|- |
|||
| align="center" | '''24''' |
|||
| align="left" | [[Centered icositetragonal numbers|'''Centered icositetragonal''']] |
|||
| align="center" | <math>24T_n+1\,</math> |
|||
<math>12n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 25 |
|||
| align="right" | 73 |
|||
| align="right" | 145 |
|||
| align="right" | 241 |
|||
| align="right" | 361 |
|||
| align="right" | 505 |
|||
| align="right" | 673 |
|||
| align="right" | 865 |
|||
| align="right" | 1081 |
|||
| align="right" | 1321 |
|||
| align="right" | 1585 |
|||
| align="center" | A069190('''''n'''''+1) |
|||
|- |
|||
| align="center" | 25 |
|||
| align="left" | [[Centered icosipentagonal numbers|Centered icosipentagonal]] |
|||
| align="center" | <math>25T_n+1\,</math> |
|||
<math>25n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 26 |
|||
| align="right" | 76 |
|||
| align="right" | 151 |
|||
| align="right" | 251 |
|||
| align="right" | 376 |
|||
| align="right" | 526 |
|||
| align="right" | 701 |
|||
| align="right" | 901 |
|||
| align="right" | 1126 |
|||
| align="right" | 1376 |
|||
| align="right" | 1651 |
|||
| align="center" | [[OEIS:A??????]] |
|||
|- |
|||
| align="center" | 26 |
|||
| align="left" | [[Centered Icosihexagonal numbers|Centered icosihexagonal]] |
|||
| align="center" | <math>26T_n+1\,</math> |
|||
<math>13n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 27 |
|||
| align="right" | 79 |
|||
| align="right" | 157 |
|||
| align="right" | 261 |
|||
| align="right" | 391 |
|||
| align="right" | 547 |
|||
| align="right" | 729 |
|||
| align="right" | 937 |
|||
| align="right" | 1171 |
|||
| align="right" | 1431 |
|||
| align="right" | 1717 |
|||
| align="center" | [[OEIS:A??????]] |
|||
|- |
|||
| align="center" | 27 |
|||
| align="left" | [[Centered icosiheptagonal numbers|Centered icosiheptagonal]] |
|||
| align="center" | <math>27T_n+1\,</math> |
|||
<math>27n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 28 |
|||
| align="right" | 82 |
|||
| align="right" | 163 |
|||
| align="right" | 271 |
|||
| align="right" | 406 |
|||
| align="right" | 568 |
|||
| align="right" | 757 |
|||
| align="right" | 973 |
|||
| align="right" | 1216 |
|||
| align="right" | 1486 |
|||
| align="right" | 1783 |
|||
| align="center" | [[OEIS:A??????]] |
|||
|- |
|||
| align="center" | 28 |
|||
| align="left" | [[Centered icosioctagonal numbers|Centered icosioctagonal]] |
|||
| align="center" | <math>28T_n+1\,</math> |
|||
<math>14n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 29 |
|||
| align="right" | 85 |
|||
| align="right" | 169 |
|||
| align="right" | 281 |
|||
| align="right" | 421 |
|||
| align="right" | 589 |
|||
| align="right" | 785 |
|||
| align="right" | 1009 |
|||
| align="right" | 1261 |
|||
| align="right" | 1541 |
|||
| align="right" | 1849 |
|||
| align="center" | [[OEIS:A??????]] |
|||
|- |
|||
| align="center" | 29 |
|||
| align="left" | [[Centered icosinonagonal numbers|Centered icosinonagonal]] |
|||
| align="center" | <math>29T_n+1\,</math> |
|||
<math>29n(n+1)/2+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 30 |
|||
| align="right" | 88 |
|||
| align="right" | 175 |
|||
| align="right" | 291 |
|||
| align="right" | 436 |
|||
| align="right" | 610 |
|||
| align="right" | 813 |
|||
| align="right" | 1045 |
|||
| align="right" | 1306 |
|||
| align="right" | 1596 |
|||
| align="right" | 1915 |
|||
| align="center" | [[OEIS:A??????]] |
|||
|- |
|||
| align="center" | '''30''' |
|||
| align="left" | [[Centered triacontagonal numbers|'''Centered triacontagonal''']] |
|||
| align="center" | <math>30T_n+1\,</math> |
|||
<math>15n(n+1)+1\,</math> |
|||
| align="right" | 1 |
|||
| align="right" | 31 |
|||
| align="right" | 91 |
|||
| align="right" | 181 |
|||
| align="right" | 301 |
|||
| align="right" | 451 |
|||
| align="right" | 631 |
|||
| align="right" | 841 |
|||
| align="right" | 1081 |
|||
| align="right" | 1351 |
|||
| align="right" | 1651 |
|||
| align="right" | 1981 |
|||
| align="center" | [[OEIS:A??????]] |
|||
|- |
|||
|} |
|||
<br /> |
|||
== Table of related formulae and values == |
|||
Centered polygonal numbers associated with [[constructible polygons]] (Cf. A003401) (with straightedge and compass) are named in '''bold'''. |
|||
<!--== Wikitable color scheme is: [background: #f2f2f2; for table header] [background: #f9f9f9; for table cells] ==--> |
|||
{| class="wikitable" align="center" border="1" cellspacing="0" cellpadding="4" style="border-collapse: collapse; border: 1px solid darkgray; background: #f9f9f9; color: black; empty-cells: show; text-align: right;" |
|||
|+ '''Centered polygonal numbers related formulae and values''' |
|||
|- style="background: #f2f2f2; color: black; text-align: center;" |
|||
! width="25" style="text-align: center;" | ''N''<sub>0</sub> |
|||
! style="text-align: center;" | Name |
|||
! style="text-align: center;" | Generating |
|||
function |
|||
<math>G_{\{\,_cP^{(2)}_{N_0}(n)\}}(x) =\,</math> |
|||
<math>{{x^2+(N_0-2)x+1}\over{(1-x)^3}}\,</math> |
|||
! style="text-align: center;" | Order |
|||
of basis |
|||
<math>g_{\{\,_cP^{(2)}_{N_0}\}}\,</math> |
|||
! align="center" | Differences |
|||
<math>\,_cP^{(2)}_{N_0}(n) - \,</math> |
|||
<math>\,_cP^{(2)}_{N_0}(n-1) =\,</math> |
|||
<math>N_0\ n\,</math> |
|||
! align="center" | Partial sums |
|||
<math>\sum_{n=0}^m {\,_cP^{(2)}_{N_0}(n)} =</math> |
|||
<math>N_0 \binom{m+2}{3} + m\,</math> |
|||
<math>N_0\ P^{(3)}_{4}(m) + m\,</math> |
|||
! align="center" | Partial sums of reciprocals |
|||
<math>\sum_{n=0}^m {1\over{\,_cP^{(2)}_{N_0}(n)}} =</math> |
|||
! align="center" | Sum of Reciprocals<ref>Downey, Lawrence M., Ong, Boon W., and Sellers, James A., [http://www.math.psu.edu/sellersj/downey_ong_sellers_cmj_preprint.pdf Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers], 2008.</ref> |
|||
<math>\sum_{n=0}^\infty{1\over{\,_cP^{(2)}_{N_0}(n)}} =</math> |
|||
<math>\scriptstyle {\frac{2\pi}{N_0 \sqrt{1-\tfrac{8}{N_0}}} \tan{\big( \frac{\pi}{2} \sqrt{1-\tfrac{8}{N_0}} \big)}},\,</math> |
|||
<math>\scriptstyle N_0 \neq 8,\,</math> |
|||
<math>\frac{\pi^2}{8},\ N_0 = 8.\,</math> |
|||
|- |
|||
| align="center" | '''3''' |
|||
| align="left" | [[Centered triangular numbers|'''Centered triangular''']] |
|||
| align="center" | <math>{x^2+x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>3n\,</math> |
|||
| align="center" | <math>3 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | '''4''' |
|||
| align="left" | [[Centered square numbers|'''Centered square''']] |
|||
| align="center" | <math>{x^2+2x+1}\over{(1-x)^3}\,</math> |
|||
<math>{(x+1)^2}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>4n\,</math> |
|||
| align="center" | <math>4 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{\pi}{2} \tanh\bigg(\frac{\pi}{2}\bigg)\,</math> |
|||
|- |
|||
| align="center" | '''5''' |
|||
| align="left" | [[Centered pentagonal numbers|'''Centered pentagonal''']] |
|||
| align="center" | <math>{x^2+3x+1}\over{(1-x)^3}\,</math> <!-- <ref>[http://www.wolframalpha.com/input/?i=%28x^2%2B%283%29x%2B1%29%2F%281-x%29^3 <math>\scriptstyle {{x^2+3x+1}\over{(1-x)^3}}\,</math>], Wolfram Alpha.</ref> --> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>5n\,</math> |
|||
| align="center" | <math>5 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | '''6''' |
|||
| align="left" | [[Centered hexagonal numbers|'''Centered hexagonal''']] |
|||
| align="center" | <math>{x^2+4x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>6n\,</math> |
|||
| align="center" | <math>6 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{\pi}{\sqrt{3}} \tanh\bigg(\frac{\pi}{2 \sqrt{3}}\bigg)\,</math> |
|||
|- |
|||
| align="center" | 7 |
|||
| align="left" | [[Centered heptagonal numbers|Centered heptagonal]] |
|||
| align="center" | <math>{x^2+5x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>7n\,</math> |
|||
| align="center" | <math>7 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{2\pi}{\sqrt{7}} \tanh\bigg(\frac{\pi}{2 \sqrt{7}}\bigg)\,</math> |
|||
|- |
|||
| align="center" | '''8''' |
|||
| align="left" | [[Centered octagonal numbers|'''Centered octagonal''']] |
|||
| align="center" | <math>{x^2+6x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>8n\,</math> |
|||
| align="center" | <math>8 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{\pi^2}{8}\,</math> |
|||
|- |
|||
| align="center" | 9 |
|||
| align="left" | [[Centered nonagonal numbers|Centered nonagonal]] |
|||
| align="center" | <math>{x^2+7x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>9n\,</math> |
|||
| align="center" | <math>9 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{2\pi}{3} \tan\bigg(\frac{\pi}{6}\bigg)\,</math> |
|||
|- |
|||
| align="center" | '''10''' |
|||
| align="left" | [[Centered decagonal numbers|'''Centered decagonal''']] |
|||
| align="center" | <math>{x^2+8x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>10n\,</math> |
|||
| align="center" | <math>10 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{\pi}{\sqrt{5}} \tan\bigg(\frac{\pi}{2 \sqrt{5}}\bigg)\,</math> |
|||
|- |
|||
| align="center" | 11 |
|||
| align="left" | [[Centered hendecagonal numbers|Centered hendecagonal]] |
|||
| align="center" | <math>{x^2+9x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>11n\,</math> |
|||
| align="center" | <math>11 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | '''12''' |
|||
| align="left" | [[Centered dodecagonal numbers|'''Centered dodecagonal''']] |
|||
| align="center" | <math>{x^2+10x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>12n\,</math> |
|||
| align="center" | <math>12 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{\pi}{2\sqrt{3}} \tan\bigg(\frac{\pi}{2 \sqrt{3}}\bigg)\,</math> |
|||
|- |
|||
| align="center" | 13 |
|||
| align="left" | [[Centered tridecagonal numbers|Centered tridecagonal]] |
|||
| align="center" | <math>{x^2+11x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>13n\,</math> |
|||
| align="center" | <math>13 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 14 |
|||
| align="left" | [[Centered tetradecagonal numbers|Centered tetradecagonal]] |
|||
| align="center" | <math>{x^2+12x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>14n\,</math> |
|||
| align="center" | <math>14 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | '''15''' |
|||
| align="left" | [[Centered pentadecagonal numbers|'''Centered pentadecagonal''']] |
|||
| align="center" | <math>{x^2+13x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>15n\,</math> |
|||
| align="center" | <math>15 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | '''16''' |
|||
| align="left" | [[Centered hexadecagonal numbers|'''Centered hexadecagonal''']] |
|||
| align="center" | <math>{x^2+14x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>16n\,</math> |
|||
| align="center" | <math>16 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{\pi}{4\sqrt{2}} \tan\bigg(\frac{\pi}{2 \sqrt{2}}\bigg)\,</math> |
|||
|- |
|||
| align="center" | '''17''' |
|||
| align="left" | [[Centered heptadecagonal numbers|'''Centered heptadecagonal''']] |
|||
| align="center" | <math>{x^2+15x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>17n\,</math> |
|||
| align="center" | <math>17 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 18 |
|||
| align="left" | [[Centered octadecagonal numbers|Centered octadecagonal]] |
|||
| align="center" | <math>{x^2+16x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>18n\,</math> |
|||
| align="center" | <math>18 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 19 |
|||
| align="left" | [[Centered nonadecagonal numbers|Centered nonadecagonal]] |
|||
| align="center" | <math>{x^2+17x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>19n\,</math> |
|||
| align="center" | <math>19 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | '''20''' |
|||
| align="left" | [[Centered icosagonal numbers|'''Centered icosagonal''']] |
|||
| align="center" | <math>{x^2+18x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>20n\,</math> |
|||
| align="center" | <math>20 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 21 |
|||
| align="left" | [[Centered icosihenagonal numbers|Centered icosihenagonal]] |
|||
| align="center" | <math>{x^2+19x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>21n\,</math> |
|||
| align="center" | <math>21 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 22 |
|||
| align="left" | [[Centered icosidigonal numbers|Centered icosidigonal]] |
|||
| align="center" | <math>{x^2+20x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>22n\,</math> |
|||
| align="center" | <math>22 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 23 |
|||
| align="left" | [[Centered icositrigonal numbers|Centered icositrigonal]] |
|||
| align="center" | <math>{x^2+21x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>23n\,</math> |
|||
| align="center" | <math>23 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | '''24''' |
|||
| align="left" | [[Centered icositetragonal numbers|'''Centered icositetragonal''']] |
|||
| align="center" | <math>{x^2+22x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>24n\,</math> |
|||
| align="center" | <math>24 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{\pi}{4\sqrt{6}} \tan\bigg( \frac{\pi}{\sqrt{6}} \bigg)\,</math> |
|||
|- |
|||
| align="center" | 25 |
|||
| align="left" | [[Centered icosipentagonal numbers|Centered icosipentagonal]] |
|||
| align="center" | <math>{x^2+23x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>25n\,</math> |
|||
| align="center" | <math>25 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 26 |
|||
| align="left" | [[Centered icosihexagonal numbers|Centered icosihexagonal]] |
|||
| align="center" | <math>{x^2+24x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>26n\,</math> |
|||
| align="center" | <math>26 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 27 |
|||
| align="left" | [[Centered icosiheptagonal numbers|Centered icosiheptagonal]] |
|||
| align="center" | <math>{x^2+25x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>27n\,</math> |
|||
| align="center" | <math>27 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 28 |
|||
| align="left" | [[Centered icosioctagonal numbers|Centered icosioctagonal]] |
|||
| align="center" | <math>{x^2+26x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>28n\,</math> |
|||
| align="center" | <math>28 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | 29 |
|||
| align="left" | [[Centered icosinonagonal numbers|Centered icosinonagonal]] |
|||
| align="center" | <math>{x^2+27x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>29n\,</math> |
|||
| align="center" | <math>29 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\,</math> |
|||
|- |
|||
| align="center" | '''30''' |
|||
| align="left" | [[Centered triacontagonal numbers|'''Centered triacontagonal''']] |
|||
| align="center" | <math>{x^2+28x+1}\over{(1-x)^3}\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>30n\,</math> |
|||
| align="center" | <math>30 \binom{m+2}{3} + m\,</math> |
|||
| align="center" | <math>\,</math> |
|||
| align="center" | <math>\frac{\pi}{6\sqrt{5}} \tan\bigg(\frac{\pi}{\sqrt{5}}\bigg)\,</math> |
|||
|- |
|||
|} |
|||
<br /> |
|||
== Table of sequences == |
|||
<!--== Wikitable color scheme is: [background: #f2f2f2; for table header] [background: #f9f9f9; for table cells] ==--> |
|||
{| class="wikitable" align="center" border="1" cellspacing="0" cellpadding="4" style="border-collapse: collapse; border: 1px solid darkgray; background: #f9f9f9; color: black; empty-cells: show; text-align: left;" |
|||
|+ '''Centered polygonal numbers sequences''' |
|||
|- style="background: #f2f2f2; color: black; text-align: center;" |
|||
! width="25" style="text-align: center;" | ''N''<sub>0</sub> |
|||
! style="text-align: center;" | <math>\,_cP^{(2)}_{N_0}(n),\ n \ge 0</math> sequences |
|||
|- |
|||
| style="text-align: center;" | '''3''' |
|||
| {1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, ...} |
|||
|- |
|||
| style="text-align: center;" | '''4''' |
|||
| {1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, ...} |
|||
|- |
|||
| style="text-align: center;" | '''5''' |
|||
| {1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, ...} |
|||
|- |
|||
| style="text-align: center;" | '''6''' |
|||
| {1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, ...} |
|||
|- |
|||
| style="text-align: center;" | '''7''' |
|||
| {1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953, 1072, 1198, 1331, 1471, 1618, 1772, 1933, 2101, 2276, 2458, 2647, 2843, 3046, 3256, 3473, ...} |
|||
|- |
|||
| style="text-align: center;" | '''8''' |
|||
| {1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, ...} |
|||
|- |
|||
| style="text-align: center;" | '''9''' |
|||
| {1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, ...} |
|||
|- |
|||
| style="text-align: center;" | '''10''' |
|||
| {1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, ...} |
|||
|- |
|||
| style="text-align: center;" | '''11''' |
|||
| {1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, 859, 1002, 1156, 1321, 1497, 1684, 1882, 2091, 2311, 2542, 2784, 3037, 3301, 3576, 3862, 4159, 4467, 4786, ...} |
|||
|- |
|||
| style="text-align: center;" | '''12''' |
|||
| {1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, ...} |
|||
|- |
|||
| style="text-align: center;" | '''13''' |
|||
| {1, 14, 40, 79, 131, 196, 274, 365, 469, 586, 716, 859, 1015, 1184, 1366, 1561, 1769, 1990, 2224, 2471, 2731, 3004, 3290, 3589, 3901, 4226, 4564, 4915, 5279, 5656, 6046, ...} |
|||
|- |
|||
| style="text-align: center;" | '''14''' |
|||
| {1, 15, 43, 85, 141, 211, 295, 393, 505, 631, 771, 925, 1093, 1275, 1471, 1681, 1905, 2143, 2395, 2661, 2941, 3235, 3543, 3865, 4201, 4551, 4915, 5293, 5685, 6091, 6511, ...} |
|||
|- |
|||
| style="text-align: center;" | '''15''' |
|||
| {1, 16, 46, 91, 151, 226, 316, 421, 541, 676, 826, 991, 1171, 1366, 1576, 1801, 2041, 2296, 2566, 2851, 3151, 3466, 3796, 4141, 4501, 4876, 5266, 5671, 6091, 6526, 6976, ...} |
|||
|- |
|||
| style="text-align: center;" | '''16''' |
|||
| {1, 17, 49, 97, 161, 241, 337, 449, 577, 721, 881, 1057, 1249, 1457, 1681, 1921, 2177, 2449, 2737, 3041, 3361, 3697, 4049, 4417, 4801, 5201, 5617, 6049, 6497, 6961, 7441, ...} |
|||
|- |
|||
| style="text-align: center;" | '''17''' |
|||
| {1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, ...} |
|||
|- |
|||
| style="text-align: center;" | '''18''' |
|||
| {1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, ...} |
|||
|- |
|||
| style="text-align: center;" | '''19''' |
|||
| {1, 20, 58, 115, 191, 286, 400, 533, 685, 856, 1046, 1255, 1483, 1730, 1996, 2281, 2585, 2908, 3250, 3611, 3991, 4390, 4808, 5245, 5701, 6176, 6670, 7183, 7715, 8266, 8836, ...} |
|||
|- |
|||
| style="text-align: center;" | '''20''' |
|||
| {1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, ...} |
|||
|- |
|||
| style="text-align: center;" | '''21''' |
|||
| {1, 22, 64, 127, 211, 316, 442, 589, 757, 946, 1156, 1387, 1639, 1912, 2206, 2521, 2857, 3214, 3592, 3991, 4411, 4852, 5314, 5797, 6301, 6826, 7372, 7939, 8527, 9136, 9766, ...} |
|||
|- |
|||
| style="text-align: center;" | '''22''' |
|||
| {1, 23, 67, 133, 221, 331, 463, 617, 793, 991, 1211, 1453, 1717, 2003, 2311, 2641, 2993, 3367, 3763, 4181, 4621, 5083, 5567, 6073, 6601, 7151, 7723, 8317, 8933, 9571, 10231, ...} |
|||
|- |
|||
| style="text-align: center;" |'''23''' |
|||
| {1, 24, 70, 139, 231, 346, 484, 645, 829, 1036, 1266, 1519, 1795, 2094, 2416, 2761, 3129, 3520, 3934, 4371, 4831, 5314, 5820, 6349, 6901, 7476, 8074, 8695, 9339, 10006, ...} |
|||
|- |
|||
| style="text-align: center;" | '''24''' |
|||
| {1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, ...} |
|||
|- |
|||
| style="text-align: center;" | '''25''' |
|||
| {1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, ...} |
|||
|- |
|||
| style="text-align: center;" | '''26''' |
|||
| {1, 27, 79, 157, 261, 391, 547, 729, 937, 1171, 1431, 1717, 2029, 2367, 2731, 3121, 3537, 3979, 4447, 4941, 5461, 6007, 6579, 7177, 7801, 8451, 9127, 9829, 10557, 11311, ...} |
|||
|- |
|||
| style="text-align: center;" | '''27''' |
|||
| {1, 28, 82, 163, 271, 406, 568, 757, 973, 1216, 1486, 1783, 2107, 2458, 2836, 3241, 3673, 4132, 4618, 5131, 5671, 6238, 6832, 7453, 8101, 8776, 9478, 10207, 10963, 11746, ...} |
|||
|- |
|||
| style="text-align: center;" | '''28''' |
|||
| {1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, ...} |
|||
|- |
|||
| style="text-align: center;" | '''29''' |
|||
| {1, 30, 88, 175, 291, 436, 610, 813, 1045, 1306, 1596, 1915, 2263, 2640, 3046, 3481, 3945, 4438, 4960, 5511, 6091, 6700, 7338, 8005, 8701, 9426, 10180, 10963, 11775, 12616, ...} |
|||
|- |
|||
| style="text-align: center;" | '''30''' |
|||
| {1, 31, 91, 181, 301, 451, 631, 841, 1081, 1351, 1651, 1981, 2341, 2731, 3151, 3601, 4081, 4591, 5131, 5701, 6301, 6931, 7591, 8281, 9001, 9751, 10531, 11341, 12181, 13051, ...} |
|||
|- |
|||
|} |
|||
<br> |
|||
==References== |
==References== |
Revision as of 23:34, 25 June 2019
The centered polygonal numbers are a class of series of figurate numbers, each formed by a central dot, surrounded by polygonal layers with a constant number of sides. Each side of a polygonal layer contains one dot more than a side in the previous layer, so starting from the second polygonal layer each layer of a centered k-gonal number contains k more points than the previous layer.
Examples
Each sequence is a multiple of the triangular numbers plus 1. For example, the centered square numbers are four times the triangular numbers plus 1.
These series consist of the
- centered triangular numbers 1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, ... (OEIS: A005448)
- centered square numbers 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, ... (OEIS: A001844)
- centered pentagonal numbers 1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, ... (OEIS: A005891)
- centered hexagonal numbers 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, ... (OEIS: A003215)
- centered heptagonal numbers 1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, ... (OEIS: A069099)
- centered octagonal numbers 1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, ... (OEIS: A016754), which are exactly the odd squares
- centered nonagonal numbers 1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, ... (OEIS: A060544), which include all even perfect numbers except 6
- centered decagonal numbers 1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, ... (OEIS: A062786)
- centered hendecagonal numbers 1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, ... (OEIS: A069125)
- centered dodecagonal numbers 1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, ... (OEIS: A003154), which are also the star numbers
and so on.
The following diagrams show a few examples of centered polygonal numbers and their geometric construction. Compare these diagrams with the diagrams in Polygonal number.
centered triangular number |
centered square number |
centered pentagonal number |
centered hexagonal number |
---|---|---|---|
Centered square numbers
1 | 5 | 13 | 25 | |||
---|---|---|---|---|---|---|
Centered hexagonal numbers
1 | 7 | 19 | 37 | |||
---|---|---|---|---|---|---|
Formula
As can be seen in the above diagrams, the nth centered k-gonal number can be obtained by placing k copies of the (n−1)th triangular number around a central point; therefore, the nth centered k-gonal number can be mathematically represented by
The difference of the n-th and the (n+1)-th consecutive centered k-gonal numbers is k(2n+1).
Just as is the case with regular polygonal numbers, the first centered k-gonal number is 1. Thus, for any k, 1 is both k-gonal and centered k-gonal. The next number to be both k-gonal and centered k-gonal can be found using the formula:
which tells us that 10 is both triangular and centered triangular, 25 is both square and centered square, etc.
Whereas a prime number p cannot be a polygonal number (except the trivial case, i.e. each p is the second p-gonal number), many centered polygonal numbers are primes. In fact, if k ≥ 3, k ≠ 8, k ≠ 9, then there are infinitely many centered k-gonal numbers which are primes (assuming the Bunyakovsky conjecture). (Since all centered octagonal numbers are also square numbers, and all centered nonagonal numbers are also triangular numbers (and not equal to 3), thus both of them cannot be prime numbers)
Sum of Reciprocals
The sum of reciprocals for the centered k-gonal numbers is[1]
- , if k ≠ 8
- , if k = 8
Table of formulae and values
Centered polygonal numbers associated with constructible polygons (Cf. A003401) (with straightedge and compass) are named in bold.
N0 | Name | Formulae
|
n = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | OEIS
number |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | Centered triangular |
|
1 | 4 | 10 | 19 | 31 | 46 | 64 | 85 | 109 | 136 | 166 | 199 | A005448(n+1) |
4 | Centered square |
|
1 | 5 | 13 | 25 | 41 | 61 | 85 | 113 | 145 | 181 | 221 | 265 | A001844(n) |
5 | Centered pentagonal |
|
1 | 6 | 16 | 31 | 51 | 76 | 106 | 141 | 181 | 226 | 276 | 331 | A005891(n) |
6 | Centered hexagonal |
|
1 | 7 | 19 | 37 | 61 | 91 | 127 | 169 | 217 | 271 | 331 | 397 | A003215(n) |
7 | Centered heptagonal |
|
1 | 8 | 22 | 43 | 71 | 106 | 148 | 197 | 253 | 316 | 386 | 463 | A069099(n+1) |
8 | Centered octagonal |
|
1 | 9 | 25 | 49 | 81 | 121 | 169 | 225 | 289 | 361 | 441 | 529 | A016754(n) |
9 | Centered nonagonal |
|
1 | 10 | 28 | 55 | 91 | 136 | 190 | 253 | 325 | 406 | 496 | 595 | A060544(n+1) |
10 | Centered decagonal |
|
1 | 11 | 31 | 61 | 101 | 151 | 211 | 281 | 361 | 451 | 551 | 661 | A062786(n+1) |
11 | Centered hendecagonal |
|
1 | 12 | 34 | 67 | 111 | 166 | 232 | 309 | 397 | 496 | 606 | 727 | A069125(n+1) |
12 | Centered dodecagonal |
|
1 | 13 | 37 | 73 | 121 | 181 | 253 | 337 | 433 | 541 | 661 | 793 | A003154(n+1) |
13 | Centered tridecagonal |
|
1 | 14 | 40 | 79 | 131 | 196 | 274 | 365 | 469 | 586 | 716 | 859 | A069126(n+1) |
14 | Centered tetradecagonal |
|
1 | 15 | 43 | 85 | 141 | 211 | 295 | 393 | 505 | 631 | 771 | 925 | A069127(n+1) |
15 | Centered pentadecagonal |
|
1 | 16 | 46 | 91 | 151 | 226 | 316 | 421 | 541 | 676 | 826 | 991 | A069128(n+1) |
16 | Centered hexadecagonal |
|
1 | 17 | 49 | 97 | 161 | 241 | 337 | 449 | 577 | 721 | 881 | 1057 | A069129(n+1) |
17 | Centered heptadecagonal |
|
1 | 18 | 52 | 103 | 171 | 256 | 358 | 477 | 613 | 766 | 936 | 1123 | A069130(n+1) |
18 | Centered octadecagonal |
|
1 | 19 | 55 | 109 | 181 | 271 | 379 | 505 | 649 | 811 | 991 | 1189 | A069131(n+1) |
19 | Centered nonadecagonal |
|
1 | 20 | 58 | 115 | 191 | 286 | 400 | 533 | 685 | 856 | 1046 | 1255 | A069132(n+1) |
20 | Centered icosagonal |
|
1 | 21 | 61 | 121 | 201 | 301 | 421 | 561 | 721 | 901 | 1101 | 1321 | A069133(n+1) |
21 | Centered icosihenagonal |
|
1 | 22 | 64 | 127 | 211 | 316 | 442 | 589 | 757 | 946 | 1156 | 1387 | A069178(n+1) |
22 | Centered icosidigonal |
|
1 | 23 | 67 | 133 | 221 | 331 | 463 | 617 | 793 | 991 | 1211 | 1453 | A069173(n+1) |
23 | Centered icositrigonal |
|
1 | 24 | 70 | 139 | 231 | 346 | 484 | 645 | 829 | 1036 | 1266 | 1519 | A069174(n+1) |
24 | Centered icositetragonal |
|
1 | 25 | 73 | 145 | 241 | 361 | 505 | 673 | 865 | 1081 | 1321 | 1585 | A069190(n+1) |
25 | Centered icosipentagonal |
|
1 | 26 | 76 | 151 | 251 | 376 | 526 | 701 | 901 | 1126 | 1376 | 1651 | OEIS:A?????? |
26 | Centered icosihexagonal |
|
1 | 27 | 79 | 157 | 261 | 391 | 547 | 729 | 937 | 1171 | 1431 | 1717 | OEIS:A?????? |
27 | Centered icosiheptagonal |
|
1 | 28 | 82 | 163 | 271 | 406 | 568 | 757 | 973 | 1216 | 1486 | 1783 | OEIS:A?????? |
28 | Centered icosioctagonal |
|
1 | 29 | 85 | 169 | 281 | 421 | 589 | 785 | 1009 | 1261 | 1541 | 1849 | OEIS:A?????? |
29 | Centered icosinonagonal |
|
1 | 30 | 88 | 175 | 291 | 436 | 610 | 813 | 1045 | 1306 | 1596 | 1915 | OEIS:A?????? |
30 | Centered triacontagonal |
|
1 | 31 | 91 | 181 | 301 | 451 | 631 | 841 | 1081 | 1351 | 1651 | 1981 | OEIS:A?????? |
Table of related formulae and values
Centered polygonal numbers associated with constructible polygons (Cf. A003401) (with straightedge and compass) are named in bold.
N0 | Name | Generating
function
|
Order
of basis
|
Differences
|
Partial sums
|
Partial sums of reciprocals
|
Sum of Reciprocals[2]
|
---|---|---|---|---|---|---|---|
3 | Centered triangular | ||||||
4 | Centered square |
|
|||||
5 | Centered pentagonal | ||||||
6 | Centered hexagonal | ||||||
7 | Centered heptagonal | ||||||
8 | Centered octagonal | ||||||
9 | Centered nonagonal | ||||||
10 | Centered decagonal | ||||||
11 | Centered hendecagonal | ||||||
12 | Centered dodecagonal | ||||||
13 | Centered tridecagonal | ||||||
14 | Centered tetradecagonal | ||||||
15 | Centered pentadecagonal | ||||||
16 | Centered hexadecagonal | ||||||
17 | Centered heptadecagonal | ||||||
18 | Centered octadecagonal | ||||||
19 | Centered nonadecagonal | ||||||
20 | Centered icosagonal | ||||||
21 | Centered icosihenagonal | ||||||
22 | Centered icosidigonal | ||||||
23 | Centered icositrigonal | ||||||
24 | Centered icositetragonal | ||||||
25 | Centered icosipentagonal | ||||||
26 | Centered icosihexagonal | ||||||
27 | Centered icosiheptagonal | ||||||
28 | Centered icosioctagonal | ||||||
29 | Centered icosinonagonal | ||||||
30 | Centered triacontagonal |
Table of sequences
N0 | sequences |
---|---|
3 | {1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, ...} |
4 | {1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, ...} |
5 | {1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, ...} |
6 | {1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, ...} |
7 | {1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953, 1072, 1198, 1331, 1471, 1618, 1772, 1933, 2101, 2276, 2458, 2647, 2843, 3046, 3256, 3473, ...} |
8 | {1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, ...} |
9 | {1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, ...} |
10 | {1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, ...} |
11 | {1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, 859, 1002, 1156, 1321, 1497, 1684, 1882, 2091, 2311, 2542, 2784, 3037, 3301, 3576, 3862, 4159, 4467, 4786, ...} |
12 | {1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, ...} |
13 | {1, 14, 40, 79, 131, 196, 274, 365, 469, 586, 716, 859, 1015, 1184, 1366, 1561, 1769, 1990, 2224, 2471, 2731, 3004, 3290, 3589, 3901, 4226, 4564, 4915, 5279, 5656, 6046, ...} |
14 | {1, 15, 43, 85, 141, 211, 295, 393, 505, 631, 771, 925, 1093, 1275, 1471, 1681, 1905, 2143, 2395, 2661, 2941, 3235, 3543, 3865, 4201, 4551, 4915, 5293, 5685, 6091, 6511, ...} |
15 | {1, 16, 46, 91, 151, 226, 316, 421, 541, 676, 826, 991, 1171, 1366, 1576, 1801, 2041, 2296, 2566, 2851, 3151, 3466, 3796, 4141, 4501, 4876, 5266, 5671, 6091, 6526, 6976, ...} |
16 | {1, 17, 49, 97, 161, 241, 337, 449, 577, 721, 881, 1057, 1249, 1457, 1681, 1921, 2177, 2449, 2737, 3041, 3361, 3697, 4049, 4417, 4801, 5201, 5617, 6049, 6497, 6961, 7441, ...} |
17 | {1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, ...} |
18 | {1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, ...} |
19 | {1, 20, 58, 115, 191, 286, 400, 533, 685, 856, 1046, 1255, 1483, 1730, 1996, 2281, 2585, 2908, 3250, 3611, 3991, 4390, 4808, 5245, 5701, 6176, 6670, 7183, 7715, 8266, 8836, ...} |
20 | {1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, ...} |
21 | {1, 22, 64, 127, 211, 316, 442, 589, 757, 946, 1156, 1387, 1639, 1912, 2206, 2521, 2857, 3214, 3592, 3991, 4411, 4852, 5314, 5797, 6301, 6826, 7372, 7939, 8527, 9136, 9766, ...} |
22 | {1, 23, 67, 133, 221, 331, 463, 617, 793, 991, 1211, 1453, 1717, 2003, 2311, 2641, 2993, 3367, 3763, 4181, 4621, 5083, 5567, 6073, 6601, 7151, 7723, 8317, 8933, 9571, 10231, ...} |
23 | {1, 24, 70, 139, 231, 346, 484, 645, 829, 1036, 1266, 1519, 1795, 2094, 2416, 2761, 3129, 3520, 3934, 4371, 4831, 5314, 5820, 6349, 6901, 7476, 8074, 8695, 9339, 10006, ...} |
24 | {1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, ...} |
25 | {1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, ...} |
26 | {1, 27, 79, 157, 261, 391, 547, 729, 937, 1171, 1431, 1717, 2029, 2367, 2731, 3121, 3537, 3979, 4447, 4941, 5461, 6007, 6579, 7177, 7801, 8451, 9127, 9829, 10557, 11311, ...} |
27 | {1, 28, 82, 163, 271, 406, 568, 757, 973, 1216, 1486, 1783, 2107, 2458, 2836, 3241, 3673, 4132, 4618, 5131, 5671, 6238, 6832, 7453, 8101, 8776, 9478, 10207, 10963, 11746, ...} |
28 | {1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, ...} |
29 | {1, 30, 88, 175, 291, 436, 610, 813, 1045, 1306, 1596, 1915, 2263, 2640, 3046, 3481, 3945, 4438, 4960, 5511, 6091, 6700, 7338, 8005, 8701, 9426, 10180, 10963, 11775, 12616, ...} |
30 | {1, 31, 91, 181, 301, 451, 631, 841, 1081, 1351, 1651, 1981, 2341, 2731, 3151, 3601, 4081, 4591, 5131, 5701, 6301, 6931, 7591, 8281, 9001, 9751, 10531, 11341, 12181, 13051, ...} |
References
- ^ centered polygonal numbers in OEIS wiki, content "Table of related formulae and values"
- ^ Downey, Lawrence M., Ong, Boon W., and Sellers, James A., Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, 2008.
- Neil Sloane & Simon Plouffe (1995). The Encyclopedia of Integer Sequences. San Diego: Academic Press.: Fig. M3826
- Weisstein, Eric W. "Centered polygonal number". MathWorld.
- F. Tapson (1999). The Oxford Mathematics Study Dictionary (2nd ed.). Oxford University Press. pp. 88–89. ISBN 0-19-914-567-9.