Jump to content

Cannonball problem: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
References: added External links.
Xunonotyk (talk | contribs)
m wrong link
Line 1: Line 1:
[[File:Rye Castle, Rye, East Sussex, England-6April2011 (1).jpg|thumb|A square pyramid of cannonballs in a square frame]]
[[File:Rye Castle, Rye, East Sussex, England-6April2011 (1).jpg|thumb|A square pyramid of cannonballs in a square frame]]
In the mathematics of [[figurate number]]s, the '''cannonball problem''' asks which numbers are both [[square]] and [[square pyramidal number|square pyramidal]]. The problem can be stated as: given a square arrangement of cannonballs, for what size squares can these cannonballs also be arranged into a square pyramid.
In the mathematics of [[figurate number]]s, the '''cannonball problem''' asks which numbers are both [[Square number|square]] and [[square pyramidal number|square pyramidal]]. The problem can be stated as: given a square arrangement of cannonballs, for what size squares can these cannonballs also be arranged into a square pyramid.
Equivalently, which squares can be represented as the sum of consecutive squares, starting from 1?
Equivalently, which squares can be represented as the sum of consecutive squares, starting from 1?


Line 14: Line 14:


==Applications==
==Applications==
The solution ''N'' = 24, ''M'' = 70. can be used for constructing the [[Leech_lattice#Using_the_Lorentzian_lattice_II25,1|Leech Lattice]]. The result has relevance to the [[bosonic string theory]] in 26 dimensions.<ref>{{cite web|url=http://math.ucr.edu/home/baez/week95.html |title=week95 |publisher=Math.ucr.edu |date=1996-11-26 |accessdate=2012-01-04}}</ref>
The solution ''N'' = 24, ''M'' = 70 can be used for constructing the [[Leech_lattice#Using_the_Lorentzian_lattice_II25,1|Leech Lattice]]. The result has relevance to the [[bosonic string theory]] in 26 dimensions.<ref>{{cite web|url=http://math.ucr.edu/home/baez/week95.html |title=week95 |publisher=Math.ucr.edu |date=1996-11-26 |accessdate=2012-01-04}}</ref>


Although it is possible to [[Squaring the square|tile a geometric square with unequal squares]], it is not possible to do so with a solution to the cannonball problem. The squares with side lengths from 1 to 24 have areas equal to the square with side length 70, but they cannot be arranged to tile it.
Although it is possible to [[Squaring the square|tile a geometric square with unequal squares]], it is not possible to do so with a solution to the cannonball problem. The squares with side lengths from 1 to 24 have areas equal to the square with side length 70, but they cannot be arranged to tile it.

Revision as of 20:18, 17 July 2019

A square pyramid of cannonballs in a square frame

In the mathematics of figurate numbers, the cannonball problem asks which numbers are both square and square pyramidal. The problem can be stated as: given a square arrangement of cannonballs, for what size squares can these cannonballs also be arranged into a square pyramid. Equivalently, which squares can be represented as the sum of consecutive squares, starting from 1?

Formulation as a Diophantine equation

When cannonballs are stacked within a square frame, the number of balls is a square pyramidal number; Thomas Harriot gave a formula for this number around 1587, answering a question posed to him by Sir Walter Raleigh on their expedition to America.[1] Édouard Lucas formulated the cannonball problem as a Diophantine equation

or

Solution

Lucas conjectured that the only solutions are N = 1, M = 1, and N = 24, M = 70, using either 1 or 4900 cannon balls. It was not until 1918 that G. N. Watson found a proof for this fact, using elliptic functions. More recently, elementary proofs have been published.[2][3]

Applications

The solution N = 24, M = 70 can be used for constructing the Leech Lattice. The result has relevance to the bosonic string theory in 26 dimensions.[4]

Although it is possible to tile a geometric square with unequal squares, it is not possible to do so with a solution to the cannonball problem. The squares with side lengths from 1 to 24 have areas equal to the square with side length 70, but they cannot be arranged to tile it.

The only numbers that are simultaneously triangular and square pyramidal, are 1, 55, 91, and 208335.[5][6].

There are no numbers (other than the trivial solution 1) that are both tetrahedral and square pyramidal.[6]

See also

References

  1. ^ David Darling. "Cannonball Problem". The Internet Encyclopedia of Science.
  2. ^ Ma, D. G. (1985). "An Elementary Proof of the Solutions to the Diophantine Equation ". Sichuan Daxue Xuebao. 4: 107–116.
  3. ^ Anglin, W. S. (1990). "The Square Pyramid Puzzle". American Mathematical Monthly. 97 (2): 120–124. doi:10.2307/2323911. JSTOR 2323911.
  4. ^ "week95". Math.ucr.edu. 1996-11-26. Retrieved 2012-01-04.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A039596 (Numbers that are simultaneously triangular and square pyramidal)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ a b Weisstein, Eric W. "Square Pyramidal Number". MathWorld.