Two-phase commit protocol: Difference between revisions
Tag: section blanking |
Tag: section blanking |
||
Line 56: | Line 56: | ||
This common architecture is also effective for the distribution of other [[Atomic commit|atomic commitment protocol]]s besides 2PC, since all such protocols use the same voting mechanism and outcome propagation to protocol participants.<ref name="bernstein1987" /><ref name="weikum2001" /> |
This common architecture is also effective for the distribution of other [[Atomic commit|atomic commitment protocol]]s besides 2PC, since all such protocols use the same voting mechanism and outcome propagation to protocol participants.<ref name="bernstein1987" /><ref name="weikum2001" /> |
||
===Protocol optimizations=== |
|||
[[Database]] research has been done on ways to get most of the benefits of the two-phase commit protocol while reducing costs by ''protocol optimizations''<ref name="bernstein1987" /><ref name="weikum2001" /><ref name="Bern2009" /> and protocol operations saving under certain system's behavior assumptions. |
|||
==See also== |
==See also== |
Revision as of 09:56, 16 August 2019
In transaction processing, databases, and computer networking, the two-phase commit protocol (2PC) is a type of atomic commitment protocol (ACP). It is a distributed algorithm that coordinates all the processes that participate in a distributed atomic transaction on whether to commit or abort (roll back) the transaction (it is a specialized type of consensus protocol). The protocol achieves its goal even in many cases of temporary system failure (involving either process, network node, communication, etc. failures), and is thus widely used.[1][2][3] However, it is not resilient to all possible failure configurations, and in rare cases, manual intervention is needed to remedy an outcome. To accommodate recovery from failure (automatic in most cases) the protocol's participants use logging of the protocol's states. Log records, which are typically slow to generate but survive failures, are used by the protocol's recovery procedures. Many protocol variants exist that primarily differ in logging strategies and recovery mechanisms. Though usually intended to be used infrequently, recovery procedures compose a substantial portion of the protocol, due to many possible failure scenarios to be considered and supported by the protocol.
In a "normal execution" of any single distributed transaction (i.e., when no failure occurs, which is typically the most frequent situation), the protocol consists of two phases:
- The commit-request phase (or voting phase), in which a coordinator process attempts to prepare all the transaction's participating processes (named participants, cohorts, or workers) to take the necessary steps for either committing or aborting the transaction and to vote, either "Yes": commit (if the transaction participant's local portion execution has ended properly), or "No": abort (if a problem has been detected with the local portion), and
- The commit phase, in which, based on voting of the participants, the coordinator decides whether to commit (only if all have voted "Yes") or abort the transaction (otherwise), and notifies the result to all the participants. The participants then follow with the needed actions (commit or abort) with their local transactional resources (also called recoverable resources; e.g., database data) and their respective portions in the transaction's other output (if applicable).
Note that the two-phase commit (2PC) protocol should not be confused with the two-phase locking (2PL) protocol, a concurrency control protocol.
Assumptions
The protocol works in the following manner: one node is a designated coordinator, which is the master site, and the rest of the nodes in the network are designated the participants. The protocol assumes that there is stable storage at each node with a write-ahead log, that no node crashes forever, that the data in the write-ahead log is never lost or corrupted in a crash, and that any two nodes can communicate with each other. The last assumption is not too restrictive, as network communication can typically be rerouted. The first two assumptions are much stronger; if a node is totally destroyed then data can be lost.
The protocol is initiated by the coordinator after the last step of the transaction has been reached. The participants then respond with an agreement message or an abort message depending on whether the transaction has been processed successfully at the participant.
Basic algorithm
Commit request (or voting) phase
- The coordinator sends a query to commit message to all participants and waits until it has received a reply from all participants.
- The participants execute the transaction up to the point where they will be asked to commit. They each write an entry to their undo log and an entry to their redo log.
- Each participant replies with an agreement message (participant votes Yes to commit), if the participant's actions succeeded, or an abort message (participant votes No, not to commit), if the participant experiences a failure that will make it impossible to commit.
Commit (or completion) phase
Success
If the coordinator received an agreement message from all participants during the commit-request phase:
- The coordinator sends a commit message to all the participants.
- Each participant completes the operation, and releases all the locks and resources held during the transaction.
- Each participant sends an acknowledgment to the coordinator.
- The coordinator completes the transaction when all acknowledgments have been received.
Message flow
Coordinator Participant QUERY TO COMMIT --------------------------------> VOTE YES/NO prepare*/abort* <------------------------------- commit*/abort* COMMIT/ROLLBACK --------------------------------> ACKNOWLEDGMENT commit*/abort* <-------------------------------- end
An * next to the record type means that the record is forced to stable storage.[4]
Disadvantages
The greatest disadvantage of the two-phase commit protocol is that it is a blocking protocol. If the coordinator fails permanently, some participants will never resolve their transactions: After a participant has sent an agreement message to the coordinator, it will block until a commit or rollback is received.
Implementing the two-phase commit protocol
Common architecture
In many cases the 2PC protocol is distributed in a computer network. It is easily distributed by implementing multiple dedicated 2PC components similar to each other, typically named Transaction managers (TMs; also referred to as 2PC agents or Transaction Processing Monitors), that carry out the protocol's execution for each transaction (e.g., The Open Group's X/Open XA). The databases involved with a distributed transaction, the participants, both the coordinator and participants, register to close TMs (typically residing on respective same network nodes as the participants) for terminating that transaction using 2PC. Each distributed transaction has an ad hoc set of TMs, the TMs to which the transaction participants register. A leader, the coordinator TM, exists for each transaction to coordinate 2PC for it, typically the TM of the coordinator database. However, the coordinator role can be transferred to another TM for performance or reliability reasons. Rather than exchanging 2PC messages among themselves, the participants exchange the messages with their respective TMs. The relevant TMs communicate among themselves to execute the 2PC protocol schema above, "representing" the respective participants, for terminating that transaction. With this architecture the protocol is fully distributed (does not need any central processing component or data structure), and scales up with number of network nodes (network size) effectively.
This common architecture is also effective for the distribution of other atomic commitment protocols besides 2PC, since all such protocols use the same voting mechanism and outcome propagation to protocol participants.[1][2]
See also
- Atomic commit
- Commit (data management)
- Three-phase commit protocol
- XA
- Paxos algorithm
- Two Generals' Problem
References
- ^ a b Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman (1987): Concurrency Control and Recovery in Database Systems, Chapter 7, Addison Wesley Publishing Company, ISBN 0-201-10715-5
- ^ a b Gerhard Weikum, Gottfried Vossen (2001): Transactional Information Systems, Chapter 19, Elsevier, ISBN 1-55860-508-8
- ^ Philip A. Bernstein, Eric Newcomer (2009): Principles of Transaction Processing, 2nd Edition, Chapter 8, Morgan Kaufmann (Elsevier), ISBN 978-1-55860-623-4
- ^ C. Mohan, Bruce Lindsay and R. Obermarck (1986): "Transaction management in the R* distributed database management system",ACM Transactions on Database Systems (TODS), Volume 11 Issue 4, Dec. 1986, Pages 378 - 396
External links
- Two Phase Commit protocol explained in Pictures by exploreDatabase