Jump to content

Talk:Diamond cubic: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
Line 71: Line 71:
== Giant molecule ==
== Giant molecule ==
*As the diamond structure looks like a polycyclic cage-type hydrocarbon taken to extremes, can it be said that a diamond crystal is a single giant covalent molecule? [[User:Anthony Appleyard|Anthony Appleyard]] ([[User talk:Anthony Appleyard|talk]]) 22:45, 6 August 2017 (UTC)
*As the diamond structure looks like a polycyclic cage-type hydrocarbon taken to extremes, can it be said that a diamond crystal is a single giant covalent molecule? [[User:Anthony Appleyard|Anthony Appleyard]] ([[User talk:Anthony Appleyard|talk]]) 22:45, 6 August 2017 (UTC)

== Gibberish to anyone trying to learn ==

The diamond structure is pretty interesting. An interested person sure couldn't learn anything about it here. Who is this site for, anyway?
[[Special:Contributions/4.14.9.62|4.14.9.62]] ([[User talk:4.14.9.62|talk]]) 15:59, 4 November 2019 (UTC)

Revision as of 15:59, 4 November 2019

WikiProject iconPhysics Start‑class Mid‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-importance on the project's importance scale.

Greater clarity

The article describes the positions of atoms in a unit cell as follows:

Atomic placement in unit cell of side length a is given by the following placement vectors.








No explanation is given for what the , , or mean.

Just in case they represent standard unit basis vectors, wouldn't it be a lot clearer if the article presented the coordinates of the atoms in a unit cell of side length = 1, without inventing mysterious symbols for the unit basis vectors? Also, they could be ordered in an organized manner. The list of points would then be as follows:

( 0, 0, 0),

(1/4, 1/4, 1/4),

(1/2, 1/2, 0),

(1/2, 0, 1/2),

( 0, 1/2, 1/2),

(3/4, 3/4, 1/4),

(3/4, 1/4, 3/4),

(1/4, 3/4, 3/4).

Daqu (talk) 06:23, 2 April 2008 (UTC)[reply]

Citations

This article has a good information and it is well written, but it should have some citations. A text book would probably be ideal for this material, although a web source or online publication would do as well.128.97.68.15 (talk) 17:14, 18 July 2008 (UTC)[reply]

It's too self-serving for me to add myself, but:
  • Eppstein, David (2008), "Isometric diamond subgraphs", Proc. 16th International Symposium on Graph Drawing, arXiv:0807.2218
uses this structure. I also have some talk slides for this paper, including a description of the diamond cubic, here. I searched for other descriptions of this structure to cite both here and in my paper without much success. —David Eppstein (talk) 23:59, 26 September 2008 (UTC)[reply]
To be more specific, this paper gives the structure mathematical coordinates in four dimensions that are nicer than the three-dimensional coordinates (they are just the integer points whose coordinates add to zero or one, with two points adjacent when they are at unit distance apart) and describes how to project these four-dimensional points down to 3d to get the more familiar form of the diamond structure. It also shows that, because of this 4d structure, the diamond cubic forms an infinite partial cube. —David Eppstein (talk) 23:19, 15 March 2011 (UTC)[reply]

Incorrect information

In the first paragraph, it says that "silicon/germanium alloys in any proportion" follow the diamond structure. That's not accurate. The overall positions of atoms may be the same as in the diamond structure, but if the atoms are not all the same, the structure is different. For example, with a 50-50 ratio, the material could be the zinc-blende structure. Diamond and zinc-blende do not share the same space group, as this article would imply. — Preceding unsigned comment added by Johncolton (talkcontribs) 00:11, 31 December 2010 (UTC)[reply]

Rotating figures

I think the rotating figures would be much more useful if the rotation could be stopped at any frame by clicking. (Even more useful might be if they could be rotated by the user, but that is secondary.) — Preceding unsigned comment added by 71.191.142.176 (talk) 14:19, 6 August 2016 (UTC)[reply]

I agree. Having two nearly identical rotating figures is just plain stupid. The article NEEDS a drawing of the unit cell. Not something that moves around in random directions. It took me several minutes to even count the number of atoms in the videos: ridiculous!!!98.21.210.4 (talk) 15:25, 10 June 2017 (UTC)[reply]

Giant molecule

Gibberish to anyone trying to learn

The diamond structure is pretty interesting. An interested person sure couldn't learn anything about it here. Who is this site for, anyway? 4.14.9.62 (talk) 15:59, 4 November 2019 (UTC)[reply]