Transverse temporal gyrus: Difference between revisions
Line 27: | Line 27: | ||
==mismatch negativity== |
==mismatch negativity== |
||
One of the famous [[ERP]] |
One of the famous [[ERP]] components is the [[mismatch negativity]]. This component is consider to represent prediction error process in the brain. <ref>Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21(3-4), 147-163.</ref><ref> Parras, G. G., Nieto-Diego, J., Carbajal, G. V., Valdés-Baizabal, C., Escera, C., & Malmierca, M. S. (2017). Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature communications, 8(1), 2148. |
||
</ref>This ERP has probably two generators as demonstrated in huge number of papers, one in the right prefrontal lobe, and one on the primary auditory regions - the transverse temporal gyrus with the [[superior temporal gyrus]]<ref>Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage, 42(2), 936-944.</ref><ref>Heilbron, M., & Chait, M. (2018). Great expectations: is there evidence for predictive coding in auditory cortex?. Neuroscience, 389, 54-73.</ref>. |
</ref>This ERP has probably two generators as demonstrated in huge number of papers, one in the right prefrontal lobe, and one on the primary auditory regions - the transverse temporal gyrus with the [[superior temporal gyrus]]<ref>Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage, 42(2), 936-944.</ref><ref>Heilbron, M., & Chait, M. (2018). Great expectations: is there evidence for predictive coding in auditory cortex?. Neuroscience, 389, 54-73.</ref>. |
||
Revision as of 10:40, 26 December 2019
Transverse temporal gyrus | |
---|---|
Details | |
Part of | Temporal lobe |
Parts | Primary auditory cortex |
Artery | Middle cerebral |
Identifiers | |
Latin | gyri temporales transversi |
NeuroNames | 1520 |
TA98 | A14.1.09.140 |
TA2 | 5491 |
FMA | 72016 |
Anatomical terms of neuroanatomy |
The transverse temporal gyri, also called Heschl's gyri (/ˈhɛʃəlz ˈdʒaɪraɪ/) or Heschl's convolutions, are gyri found in the area of primary auditory cortex buried within the lateral sulcus of the human brain, occupying Brodmann areas 41 and 42. Transverse temporal gyri are superior to and separated from the planum temporale (cortex involved in language production) by Heschl’s sulcus. Transverse temporal gyri are found in varying numbers in both the right and left hemispheres of the brain and one study found that this number is not related to the hemisphere or dominance of hemisphere studied in subjects. Transverse temporal gyri can be viewed in the sagittal plane as either an omega shape (if one gyrus is present) or a heart shape (if two gyri and a sulcus are present).[1]
Transverse temporal gyri are the first cortical structures to process incoming auditory information. Anatomically, the transverse temporal gyri are distinct in that they run mediolaterally (toward the center of the brain), rather than front to back as all other temporal lobe gyri run.
The transverse temporal gyri are active during auditory processing under fMRI for tone and semantic tasks.[2] Transverse temporal gyri were found in one study to have significantly faster processing rates (33 Hz) in the left hemisphere compared to those in the right hemisphere (3 Hz). Additionally this difference in processing rate was found to be related to the volume of rate-related cortex in the gyri; right transverse temporal gyri were found to be more active during temporal processing, and these gyri were found to have more “rate-related cortex”.[1] White and grey matter volumes of transverse temporal gyri were not found to relate to this processing speed, although larger white matter volumes in subjects are associated with increased sensitivity to “rapid auditory input”.[2]
The role of transverse temporal gyri in auditory processing of tone is demonstrated by a study by Wong, Warrier et. al. (2008). This study revealed the following: subjects who could successfully form an association between Mandarin Chinese “pitch patterns” and word meaning were found to have transverse temporal gyri with larger volume than subjects who had “difficulty learning these associations.” Successful completion of the previous task also was found to be associated with a “greater concentration of white matter” in the left transverse temporal gyri of the subject. In general, larger transverse temporal gyri “could be associated with more efficient processing of speech-related cues which could facilitate learning and perceiving new speech sounds.”[2]
The Heschl's gyri are named after Richard L. Heschl.
Inner voice
Research on the inner voice perceived by humans led to the identification of these gyri as the area of the brain activated during such dialogue with oneself.[3]
mismatch negativity
One of the famous ERP components is the mismatch negativity. This component is consider to represent prediction error process in the brain. [4][5]This ERP has probably two generators as demonstrated in huge number of papers, one in the right prefrontal lobe, and one on the primary auditory regions - the transverse temporal gyrus with the superior temporal gyrus[6][7].
References
- ^ a b "Heschl's Gyrus: Anatomic description and methods of identification in MRI" (PDF).
- ^ a b c Warrier, C; Wong, P; Penhune, V; Zatorre, R; Parrish, T; Abrams, D; Kraus, N (2009). "Relating structure to function: Heschl's Gyrus and acoustic processing". J Neurosci. 29 (1): 61–9. doi:10.1523/JNEUROSCI.3489-08.2009. PMC 3341414. PMID 19129385.
- ^ Jaekl, Philip, The inner voice, Aeon, September 13, 2018
- ^ Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21(3-4), 147-163.
- ^ Parras, G. G., Nieto-Diego, J., Carbajal, G. V., Valdés-Baizabal, C., Escera, C., & Malmierca, M. S. (2017). Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature communications, 8(1), 2148.
- ^ Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage, 42(2), 936-944.
- ^ Heilbron, M., & Chait, M. (2018). Great expectations: is there evidence for predictive coding in auditory cortex?. Neuroscience, 389, 54-73.
- The peri-sylvian aphasias
- Heschl’s Gyrus: Anatomic description and methods of identification in MRI
- Relating structure to function: Heschl’s Gyrus and acoustic processing