Askey–Wilson polynomials: Difference between revisions
m convert special characters (via WP:JWB) |
m Open access bot: doi added to citation with #oabot. |
||
Line 16: | Line 16: | ||
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}} |
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}} |
||
*{{dlmf|id=18.28|title=Askey-Wilson class|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}} |
*{{dlmf|id=18.28|title=Askey-Wilson class|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}} |
||
*{{Citation | first=Tom H. | last=Koornwinder | title=Askey-Wilson polynomial | journal=Scholarpedia | volume=7 | year=2012 | issue=7 | pages=7761 | doi=10.4249/scholarpedia.7761 | url=http://www.scholarpedia.org/article/Askey-Wilson_polynomial}} |
*{{Citation | first=Tom H. | last=Koornwinder | title=Askey-Wilson polynomial | journal=Scholarpedia | volume=7 | year=2012 | issue=7 | pages=7761 | doi=10.4249/scholarpedia.7761 | url=http://www.scholarpedia.org/article/Askey-Wilson_polynomial| doi-access=free }} |
||
{{DEFAULTSORT:Askey-Wilson polynomials}} |
{{DEFAULTSORT:Askey-Wilson polynomials}} |
Revision as of 08:18, 15 April 2020
In mathematics, the Askey–Wilson polynomials (or q-Wilson polynomials) are a family of orthogonal polynomials introduced by Askey and Wilson (1985) as q-analogs of the Wilson polynomials. They include many of the other orthogonal polynomials in 1 variable as special or limiting cases, described in the Askey scheme. Askey–Wilson polynomials are the special case of Macdonald polynomials (or Koornwinder polynomials) for the non-reduced affine root system of type (C∨
1, C1), and their 4 parameters a, b, c, d correspond to the 4 orbits of roots of this root system.
They are defined by
where ϕ is a basic hypergeometric function and x = cos(θ) and (,,,)n is the q-Pochhammer symbol. Askey–Wilson functions are a generalization to non-integral values of n.
See also
References
- Askey, Richard; Wilson, James (1985), "Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials", Memoirs of the American Mathematical Society, 54 (319): iv+55, doi:10.1090/memo/0319, ISBN 978-0-8218-2321-7, ISSN 0065-9266, MR 0783216
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Askey-Wilson class", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Koornwinder, Tom H. (2012), "Askey-Wilson polynomial", Scholarpedia, 7 (7): 7761, doi:10.4249/scholarpedia.7761